Maximal and Maximum Transitive Relation Contained in a Given Binary Relation

We study the problem of finding a maximal transitive relation contained in a given binary relation. Given a binary relation of size m defined on a set of size n, we present a polynomial time algorithm that finds a maximal transitive sub-relation in time \(O(n^2 + nm)\).

[1]  Stephen Warshall,et al.  A Theorem on Boolean Matrices , 1962, JACM.

[2]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[3]  Mihalis Yannakakis,et al.  Node-and edge-deletion NP-complete problems , 1978, STOC.

[4]  Noga Alon,et al.  Maximum directed cuts in acyclic digraphs , 2007, J. Graph Theory.

[5]  Alfred V. Aho,et al.  The Transitive Reduction of a Directed Graph , 1972, SIAM J. Comput..

[6]  Bernard De Baets,et al.  T-transitive closures. , 2001 .

[7]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[8]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[9]  Esko Nuutila,et al.  Efficient transitive closure computation in large digraphs , 1995 .

[10]  R. Schreiber,et al.  Highly Parallel Sparse Triangular Solution , 1994 .

[11]  Uri Zwick,et al.  Improved Rounding Techniques for the MAX 2-SAT and MAX DI-CUT Problems , 2002, IPCO.

[12]  Virginia Vassilevska Williams,et al.  Multiplying matrices faster than coppersmith-winograd , 2012, STOC '12.

[13]  Noga Alon,et al.  Bipartite subgraphs , 1996, Comb..

[14]  Paul Erdös,et al.  How to make a graph bipartite , 1987, J. Comb. Theory, Ser. B.

[15]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[16]  Ryan O'Donnell,et al.  Optimal Inapproximability Results for MAX-CUT and Other 2-Variable CSPs? , 2007, SIAM J. Comput..

[17]  Detlef Seese,et al.  Problems Easy for Tree-Decomposable Graphs (Extended Abstract) , 1988, ICALP.

[18]  Gerald L. Thompson,et al.  An Algorithm for Finding a Minimum Equivalent Graph of a Digraph , 1969, J. ACM.

[19]  Paul Walton Purdom,et al.  A transitive closure algorithm , 1970, BIT.

[20]  Christian Komusiewicz,et al.  On making directed graphs transitive , 2009, J. Comput. Syst. Sci..