Studies on Advanced Configurations of Post-combustion CO2 Capture Process Applied to Cement Plant Flue Gases

[1]  Teerawat Sema,et al.  Comparative desorption energy consumption of post-combustion CO2 capture integrated with Mechanical Vapor Recompression technology , 2022, Separation and Purification Technology.

[2]  A. Dey,et al.  Investigation of equilibrium CO2 solubility in 35 wt% aqueous 1-(2-aminoethyl) piperazine (AEP) and performance study over monoethanolamine for CO2 absorption , 2022, Materials Today: Proceedings.

[3]  P. Tontiwachwuthikul,et al.  Experimental investigations and developing multilayer neural network models for prediction of CO 2 solubility in aqueous MDEA/PZ and MEA/MDEA/PZ blends , 2021 .

[4]  G. Scheffknecht,et al.  Experimental investigation of the calcination reactor in a tail-end calcium looping configuration for CO2 capture from cement plants , 2021 .

[5]  H. Yue,et al.  Potentials of energy efficiency improvement and energy–emission–health nexus in Jing-Jin-Ji’s cement industry , 2021, Journal of Cleaner Production.

[6]  F. Rubiera,et al.  CO2 Capture, Use, and Storage in the Cement Industry: State of the Art and Expectations , 2020, Energies.

[7]  Shaohui Zhang,et al.  An integrated assessment for achieving the 2°C target pathway in China by 2030 , 2020 .

[8]  Nai-ming Xie,et al.  Forecasting CO2 emissions of China's cement industry using a hybrid Verhulst-GM(1,N) model and emissions' technical conversion , 2020 .

[9]  A. Ababneh,et al.  Synthesis of kaolin-based alkali-activated cement: carbon footprint, cost and energy assessment , 2020 .

[10]  Zhien Zhang,et al.  Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale , 2020 .

[11]  A. Dey,et al.  Investigation on the inclusion of 1-(2-aminoethyl) piperazine as a promoter on the equilibrium CO2 solubility of aqueous 2-amino-2-methyl-1-propanol , 2019, Journal of Molecular Liquids.

[12]  G. Cinti,et al.  Techno-economic analysis of calcium looping processes for low CO2 emission cement plants , 2019, International Journal of Greenhouse Gas Control.

[13]  P. Tontiwachwuthikul,et al.  Techno-economic analysis of CO2 capture from a 1.2 million MTPA cement plant using AMP-PZ-MEA blend , 2018, International Journal of Greenhouse Gas Control.

[14]  David W. Smith,et al.  Process simulation and parametric sensitivity study of CO2 capture from 115 MW coal–fired power plant using MEA–DEA blend , 2018, International Journal of Greenhouse Gas Control.

[15]  Lei Shen,et al.  CO2 emissions from cement industry in China: A bottom-up estimation from factory to regional and national levels , 2017, Journal of Geographical Sciences.

[16]  Calin-Cristian Cormos,et al.  Reducing the carbon footprint of cement industry by post-combustion CO2 capture: Techno-economic and environmental assessment of a CCS project in Romania , 2017 .

[17]  S. Brandani,et al.  Microwave swing regeneration of aqueous monoethanolamine for post-combustion CO2 capture , 2017 .

[18]  A. Krótki,et al.  Experimental results of split flow process using AMP/PZ solution for post‐combustion CO2 capture , 2017 .

[19]  L. Dubois,et al.  Simulations of various Configurations of the Post-combustion CO2 Capture Process Applied to a Cement Plant Flue Gas: Parametric Study with Different Solvents , 2016 .

[20]  Moses O. Tadé,et al.  Techno-economic assessment of stripping modifications in an ammonia-based post-combustion capture process , 2016 .

[21]  Young Eun Kim,et al.  CO2 absorption characteristics of a piperazine derivative with primary, secondary, and tertiary amino groups , 2016, Korean Journal of Chemical Engineering.

[22]  Zhiwu Liang,et al.  Experimental Study of Regeneration Performance of Aqueous N,N-Diethylethanolamine Solution in a Column Packed with Dixon Ring Random Packing , 2016 .

[23]  J. Gomes,et al.  Scale-Up Effects of CO2 Capture by Methyldiethanolamine (MDEA) Solutions in Terms of Loading Capacity , 2016 .

[24]  Jian Chen,et al.  Systematic study of aqueous monoethanolamine‐based CO2 capture process: model development and process improvement , 2016 .

[25]  J. Huertas,et al.  CO2 Absorbing Capacity of MEA , 2015 .

[26]  M. Stec,et al.  Pilot plant results for advanced CO2 capture process using amine scrubbing at the Jaworzno II Power Plant in Poland , 2015 .

[27]  Chonghun Han,et al.  New Configuration of the CO2 Capture Process Using Aqueous Monoethanolamine for Coal-Fired Power Plants , 2015 .

[28]  Thomas A. Adams,et al.  Chapter 6 – Processes and simulations for solvent-based CO2 capture and syngas cleanup , 2014 .

[29]  Kaiyun Fu,et al.  Experimental Studies of Regeneration Heat Duty for CO2 Desorption from Aqueous DETA Solution in a Randomly Packed Column , 2014 .

[30]  S. Brandani,et al.  Process Configuration Studies of the Amine Capture Process for Coal-fired Power Plants , 2013 .

[31]  G. Maurer,et al.  Solubility of Carbon Dioxide in Aqueous Solutions of Monoethanolamine in the Low and High Gas Loading Regions , 2013 .

[32]  Alexander K. Voice,et al.  Aqueous Piperazine/N-(2-Aminoethyl) Piperazine for CO2 Capture☆ , 2013 .

[33]  Eva Sanchez Fernandez,et al.  Optimisation of lean vapour compression (LVC) as an option for post-combustion CO2 capture: net present value maximisation , 2012 .

[34]  Jia Li,et al.  Assessing the Value of Retrofitting Cement Plants for Carbon Capture: A Case Study of a Cement Plant in Guangdong, China , 2012 .

[35]  Paitoon Tontiwachwuthikul,et al.  Mass Transfer Performance of CO2 Absorption into Aqueous Solutions of 4-Diethylamino-2-butanol, Monoethanolamine, and N-Methyldiethanolamine , 2012 .

[36]  Magne Hillestad,et al.  Capital costs and energy considerations of different alternative stripper configurations for post combustion CO2 capture , 2011 .

[37]  G. Corder,et al.  Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement , 2011 .

[38]  G. Rochelle,et al.  Density and Viscosity of Aqueous (Piperazine + Carbon Dioxide) Solutions , 2011 .

[39]  John E. Oakey,et al.  CO2 Capture Technologies for Cement Industry , 2009 .

[40]  Gary T. Rochelle,et al.  Alternative stripper configurations for CO2 capture by aqueous amines , 2007 .

[41]  Gary T. Rochelle,et al.  Innovative Absorber/Stripper Configurations for CO2 Capture by Aqueous Monoethanolamine , 2006 .

[42]  Paitoon Tontiwachwuthikul,et al.  High-efficiency structured packing for CO2 separation using 2-amino-2-methyl-1-propanol (AMP) , 1997 .

[43]  M. Melaaen,et al.  Model Development for CO 2 Capture in the Cement Industry , 2022 .