A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions.

[1]  M. Antonietti,et al.  Polymeric Graphitic Carbon Nitride for Heterogeneous Photocatalysis , 2012 .

[2]  Jinshui Zhang,et al.  Synthesis of Carbon Nitride Semiconductors in Sulfur Flux for Water Photoredox Catalysis , 2012 .

[3]  Dimitri D. Vaughn,et al.  Hybrid CuO-TiO(2-x)N(x) hollow nanocubes for photocatalytic conversion of CO2 into methane under solar irradiation. , 2012, Angewandte Chemie.

[4]  M. Antonietti,et al.  Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light. , 2012, Angewandte Chemie.

[5]  M. Loi,et al.  Charge transfer state in highly efficient polymer–fullerene bulk heterojunction solar cells , 2012 .

[6]  Markus Antonietti,et al.  Photocatalytic oxidation of water by polymeric carbon nitride nanohybrids made of sustainable elements , 2012 .

[7]  Anna Fischer,et al.  Condensed Graphitic Carbon Nitride Nanorods by Nanoconfinement: Promotion of Crystallinity on Photocatalytic Conversion , 2011 .

[8]  Jae Sung Lee,et al.  Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation , 2011 .

[9]  Ping Liu,et al.  Sulfur-mediated synthesis of carbon nitride: Band-gap engineering and improved functions for photocatalysis , 2011 .

[10]  M. Antonietti,et al.  Aerobic oxidative coupling of amines by carbon nitride photocatalysis with visible light. , 2011, Angewandte Chemie.

[11]  Arne Thomas,et al.  Cubic mesoporous graphitic carbon(IV) nitride: an all-in-one chemosensor for selective optical sensing of metal ions. , 2010, Angewandte Chemie.

[12]  Jiaguo Yu,et al.  Synthesis and enhanced photocatalytic activity of a hierarchical porous flowerlike p-n junction NiO/TiO2 photocatalyst. , 2010, Chemistry, an Asian journal.

[13]  M. Antonietti,et al.  Photocatalytic hydrogen evolution through fully conjugated poly(azomethine) networks. , 2010, Chemical communications.

[14]  Xiaobo Chen,et al.  Semiconductor-based photocatalytic hydrogen generation. , 2010, Chemical reviews.

[15]  X. Cao,et al.  From single ZnO multipods to heterostructured ZnO/ZnS, ZnO/ZnSe, ZnO/Bi2S3 and ZnO/Cu2S multipods: controlled synthesis and tunable optical and photoelectrochemical properties , 2010 .

[16]  K. Domen,et al.  Photocatalytic Water Splitting: Recent Progress and Future Challenges , 2010 .

[17]  Hui-Ming Cheng,et al.  Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. , 2010, Journal of the American Chemical Society.

[18]  Masayuki Kanehara,et al.  Photocatalytic overall water splitting promoted by two different cocatalysts for hydrogen and oxygen evolution under visible light. , 2010, Angewandte Chemie.

[19]  Michael K. Seery,et al.  Highly Visible Light Active TiO2-xNx Heterojunction Photocatalysts , 2010 .

[20]  D. Ginger,et al.  Characterizing Morphology in Bulk Heterojunction Organic Photovoltaic Systems , 2010 .

[21]  Kazuhiko Maeda,et al.  Solid Solution of GaN and ZnO as a Stable Photocatalyst for Overall Water Splitting under Visible Light , 2010 .

[22]  Kazuhiro Takanabe,et al.  Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. , 2010, Angewandte Chemie.

[23]  Lianmao Peng,et al.  An Efficient Method To Form Heterojunction CdS/TiO2 Photoelectrodes Using Highly Ordered TiO2 Nanotube Array Films , 2009 .

[24]  M. Antonietti,et al.  Ordered Mesoporous SBA-15 Type Graphitic Carbon Nitride: A Semiconductor Host Structure for Photocatalytic Hydrogen Evolution with Visible Light , 2009 .

[25]  Xiaoyang Zhu,et al.  Exciton dynamics at interfaces of organic semiconductors , 2009 .

[26]  Guillermo C Bazan,et al.  "Plastic" solar cells: self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation. , 2009, Accounts of chemical research.

[27]  Lirong Zheng,et al.  Network structured SnO2/ZnO heterojunction nanocatalyst with high photocatalytic activity. , 2009, Inorganic chemistry.

[28]  M. Antonietti,et al.  Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. , 2009, Journal of the American Chemical Society.

[29]  Frank E. Osterloh,et al.  Inorganic Materials as Catalysts for Photochemical Splitting of Water , 2008 .

[30]  Can Li,et al.  Importance of the relationship between surface phases and photocatalytic activity of TiO2. , 2008, Angewandte Chemie.

[31]  H. Jung,et al.  Effects of heterojunction on photoelectrocatalytic properties of ZnO–TiO2 films , 2007 .

[32]  W. Lee,et al.  Photocatalytic WO3/TiO2 nanoparticles working under visible light , 2006 .

[33]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[34]  H. Kim,et al.  Photocatalytic nanodiodes for visible-light photocatalysis. , 2005, Angewandte Chemie.

[35]  Y. Konishi,et al.  A patterned TiO(2)(anatase)/TiO(2)(rutile) bilayer-type photocatalyst: effect of the anatase/rutile junction on the photocatalytic activity. , 2002, Angewandte Chemie.

[36]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[37]  Arthur J. Nozik,et al.  p‐n photoelectrolysis cells , 1976 .

[38]  M. Antonietti,et al.  A metal-free polymeric photocatalyst for hydrogen production from water under visible light. , 2009, Nature materials.

[39]  Z. Alferov,et al.  The history and future of semiconductor heterostructures , 1998 .

[40]  Anders Hagfeldt,et al.  Light-Induced Redox Reactions in Nanocrystalline Systems , 1995 .