Improving regional groundwater storage estimates from GRACE and global hydrological models over Tasmania, Australia

Accuracy of groundwater storage (GWS) estimates from the Gravity Recovery and Climate Experiment (GRACE) mission usually has certain relations with hydrological models. This study develops a statistical selection approach to optimally estimate GWS from GRACE using two hydrological models: the Global Land Data Assimilation System (GLDAS) and the WaterGAP Global Hydrology Model (WGHM), over Tasmania, Australia. This approach involves three variables: the long-term trend, Pearson correlation coefficient (PR), and root mean square error (RMSE). The results show that in-situ observations are highly correlated with GRACE-GLDAS (PR from 0.64 to 0.85) and GRACE-WGHM (PR from 0.69 to 0.88) in eastern and northern regions of Tasmania, respectively. The interannual trends of GRACE-GLDAS estimates are generally ~1.8 times larger than those from GRACE-WGHM solutions. With regard to the standard method, the statistical selection approach can effectively improve the PR and Nash-Sutcliffe efficiency index (NSE) by 3.80 and 1.38%, respectively, over the northern region, while it decreases the RMSE by 1.07%. Similar improvements can also be detected in the eastern region. In terms of spatial distribution, the statistical approach benefits from advantages of the different models, especially to preserve the characteristics of Central Highland. Overall, according to the models, Tasmania experienced a pronounced GWS decline during the Millennium Drought (2003–2010), at a depletion rate of –2.57 mm/year, mainly due to decreasing precipitation. The increasing precipitation infiltration after 2010 lead to the GWS recovery by 3.94 mm/year. The limitation of the method is that it depends on the availability of in-situ groundwater level data. La précision des estimations du stockage des eaux souterraines (SES) de la mission GRACE (Gravity Recovery and Climate Experiment) a généralement certaines relations avec les modèles hydrologiques. Cette étude développe une approche de sélection statistique pour estimer de manière optimale le SES de GRACE en utilisant deux modèles hydrologiques: le Global Land Data Assimilation System (GLDAS) et le WaterGAP Global Hydrology Model (WGHM), sur la Tasmanie, en Australie. Cette approche implique trois variables: la tendance à long terme, le coefficient de corrélation de Pearson (PR) et l’erreur quadratique moyenne (RMSE). Les résultats montrent que les observations in situ sont fortement corrélées avec GRACE-GLDAS (PR de 0.64 à 0.85) et GRACE-WGHM (PR de 0.69 à 0.88) dans les régions de l’est et du nord de la Tasmanie, respectivement. Les tendances interannuelles des estimations GRACE-GLDAS sont généralement ~1.8 fois plus importantes que celles des solutions GRACE-WGHM. En ce qui concerne la méthode standard, l’approche de sélection statistique peut effectivement améliorer l’indice d’efficacité PR et Nash Sutcliffe (NSE) de 3.80 et 1.38%, respectivement, sur la région nord, tandis qu’elle diminue le RMSE de 1.07%. Des améliorations similaires peuvent également être détectées dans la région orientale. En termes de répartition spatiale, l’approche statistique bénéficie des avantages des différents modèles, notamment pour préserver les caractéristiques du Central Highland. Globalement, selon les modèles, la Tasmanie a connu un déclin prononcé du SES pendant la sécheresse du millénaire (2003–2010), à un taux de tarissement de −2.57 mm/year, principalement en raison de la diminution des précipitations. L’infiltration croissante des précipitations après 2010 a entraîné une récupération du GWS de 3.94 mm/year. La limitation de la méthode est qu’elle dépend de la disponibilité de données in situ sur le niveau des eaux souterraines. La precisión de las estimaciones de almacenamiento de agua subterránea (GWS) de la misión del Gravity Recovery and Climate Experiment (GRACE) suele tener ciertas relaciones con los modelos hidrológicos. Este estudio desarrolla un enfoque de selección estadística para estimar de manera óptima el GWS a partir del GRACE utilizando dos modelos hidrológicos: el Global Land Data Assimilation System (GLDAS) y el WaterGAP Global Hydrology Model (WGHM), sobre Tasmania, Australia. Este enfoque implica tres variables: la tendencia a largo plazo, el coeficiente de correlación de Pearson (PR) y el error cuadrático medio de la raíz (RMSE). Los resultados muestran que las observaciones in situ están altamente correlacionadas con el GRACE-GLDAS (PR de 0.64 a 0.85) y el GRACE-WGHM (PR de 0.69 a 0.88) en las regiones orientales y septentrionales de Tasmania, respectivamente. Las tendencias interanuales de las estimaciones de GRACE-GLDAS son generalmente ~1.8 veces mayores que las de las soluciones de GRACE-WGHM. Con respecto al método estándar, el enfoque de selección estadística puede mejorar eficazmente el índice de eficiencia de PR y Nash-Sutcliffe (NSE) en un 3.80 y un 1.38%, respectivamente, en la región norte, mientras que disminuye el RMSE en un 1.07%. También se pueden detectar mejoras similares en la región oriental. En cuanto a la distribución espacial, el enfoque estadístico se beneficia de las ventajas de los diferentes modelos, especialmente para preservar las características del altiplano central. En general, según los modelos, Tasmania experimentó un pronunciado descenso del SMG durante la sequía del milenio (2003–2010), con una tasa de agotamiento de −2.57 mm/año, debido principalmente a la disminución de las precipitaciones. La creciente infiltración de precipitaciones después de 2010 llevó a la recuperación del GWS en 3.94 mm/año. La limitación del método es que depende de la disponibilidad de datos sobre el nivel de las aguas subterráneas in situ. GRACE卫星监测地下水储量变化的准确性通常与采用的水文模型存在密切的联系。本研究提出了一种统计选择的方法对澳大利亚塔斯马尼州的地下水储量变化进行优化,用到的数据有GRACE产品,GLDAS和WGHM两种水文模型的变量。该方法共包含三个指标,分别为长期趋势,Pearson相关系数(PR)和均方根误差(RMSE)。结果表明实测数据在塔斯马尼州的东部地区与GRACE-GLDAS结果拟合较好(PR: 0.64–0.85),在北部地区却与GRACE-WGHM拟合较好(PR: 0.69–0.88);并且GRACE-GLDAS结果的年际变化趋势基本是GRACE-WGHM的1.8倍。相比于传统的处理方法,利用该统计方法能够将北部地区的PR和纳什效率系数(NSE)分别提高3.80% 和1.38%,将RMSE减少1.07%。在东部地区也可以观察到相似的改进。就空间分布而言,该统计方法能够充分利用不同模型的优势结果,并且保留中部高地的变化特征。整体而言,塔斯马尼州在“千年干旱(2003–2010)“期间的地下水储量呈明显的下降趋势,斜率为–2.57 mm/year。2010年之后随着降雨入渗补给的增加,地下水储量有所恢复,斜率为3.94 mm/year。需要注意的是该方法依赖于实测地下水位数据的获取。 As estimativas de precisão do armazenamento de águas subterrâneas (AAS) da missão GRACE (Gravity Recovery and Climate Experiment) geralmente têm certas relações com modelos hidrológicos. Este estudo desenvolve uma abordagem de seleção estatística para estimar o AAS do GRACE de forma otimizada, usando dois modelos hidrológicos: o Sistema Global de Assimilação de Dados Terrestres (GLDAS) e o Modelo Global de Hidrologia WaterGAP (WGHM), na Tasmânia, Austrália. Essa abordagem envolve três variáveis: tendência de longo prazo, coeficiente de correlação de Pearson (PR) e a raiz do erro quadrático médio (RMSE). Os resultados mostram que as observações in situ estão altamente correlacionadas com GRACE-GLDAS (PR de 0.64 a 0.85) e GRACE-WGHM (PR de 0.69 a 0.88) nas regiões leste e norte da Tasmânia, respectivamente. As tendências interanuais das estimativas do GRACE-GLDAS são geralmente ~1.8 vezes maiores do que as das soluções GRACE-WGHM. Com relação ao método padrão, a abordagem de seleção estatística pode melhorar efetivamente o PR e o índice de eficiência de Nash-Sutcliffe (NSE) em 3.80 e 1.38%, respectivamente, na região norte, enquanto diminui o RMSE em 1.07%. Melhorias semelhantes também podem ser detectadas na região leste. Em termos de distribuição espacial, a abordagem estatística se beneficia das vantagens dos diferentes modelos, principalmente para preservar as características do Planalto Central. No geral, de acordo com os modelos, a Tasmânia sofreu um declínio acentuado do AAS durante a Seca do Milênio (2003–2010), a uma taxa de depleção de −2.57 mm/ano, principalmente devido a diminuição da precipitação. O aumento da infiltração de precipitação após 2010 levou a recuperação do AAS em 3.94 mm/ano. A limitação do método é que depende da disponibilidade de dados de nível da água subterrânea no local.

[1]  J. Robert Benada Physical Oceanography Distributed Active Archive Center , 1997 .

[2]  P. Döll,et al.  A global hydrological model for deriving water availability indicators: model tuning and validation , 2003 .

[3]  M. Watkins,et al.  GRACE Measurements of Mass Variability in the Earth System , 2004, Science.

[4]  S. Goddard,et al.  A Self-Calibrating Palmer Drought Severity Index , 2004 .

[5]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[6]  S. Swenson,et al.  Post‐processing removal of correlated errors in GRACE data , 2006 .

[7]  Jeffrey G. Arnold,et al.  Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations , 2007 .

[8]  Y. Hong,et al.  The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales , 2007 .

[9]  J. Famiglietti,et al.  Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE , 2007 .

[10]  M. Rodell,et al.  Assimilation of GRACE Terrestrial Water Storage Data into a Land Surface Model: Results for the Mississippi River Basin , 2008 .

[11]  D. Rowlands,et al.  Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions , 2008, Journal of Glaciology.

[12]  G. Holz Seasonal variation in groundwater levels and quality under intensively drained and grazed pastures in the Montagu catchment, NW Tasmania , 2009 .

[13]  Jiancheng Shi,et al.  Numerical experiments of surface energy balance over China area based on GLDAS , 2009 .

[14]  J. Famiglietti,et al.  Satellite-based estimates of groundwater depletion in India , 2009, Nature.

[15]  M. England,et al.  What causes southeast Australia's worst droughts? , 2009 .

[16]  M. Bierkens,et al.  Global depletion of groundwater resources , 2010 .

[17]  P. Döll,et al.  Groundwater use for irrigation - a global inventory , 2010 .

[18]  E. Cook,et al.  The potential to reconstruct broadscale climate indices associated with southeast Australian droughts from Athrotaxis species, Tasmania , 2011 .

[19]  S. Swenson,et al.  Satellites measure recent rates of groundwater depletion in California's Central Valley , 2011 .

[20]  N. Bindoff,et al.  High-resolution projections of surface water availability for Tasmania, Australia , 2012 .

[21]  B. Scanlon,et al.  Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA , 2012 .

[22]  M. Zhong,et al.  Efficient accuracy improvement of GRACE global gravitational field recovery using a new Inter-satellite Range Interpolation Method , 2012 .

[23]  S. Bettadpur Insights into the Earth System mass variability from CSR-RL05 GRACE gravity fields , 2012 .

[24]  F. Landerer,et al.  Accuracy of scaled GRACE terrestrial water storage estimates , 2012 .

[25]  F. Chiew,et al.  A robust methodology for conducting large-scale assessments of current and future water availability and use: A case study in Tasmania, Australia , 2012 .

[26]  B. Scanlon,et al.  GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas , 2013 .

[27]  Wang Wan-zhao Applicability of GLDAS and Climate Change in the Qinghai-Xizang Plateau and Its Surrounding Arid Area , 2013 .

[28]  B. Timbal,et al.  The Millennium Drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society , 2013 .

[29]  Shuanggen Jin,et al.  Large-scale variations of global groundwater from satellite gravimetry and hydrological models, 2002–2012 , 2013 .

[30]  S. Abelen,et al.  Relating satellite gravimetry data to global soil moisture products via data harmonization and correlation analysis , 2013 .

[31]  W. Feng,et al.  Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground‐based measurements , 2013 .

[32]  Wang We Assessing the applicability of GLDAS monthly precipitation data in China , 2014 .

[33]  P. Döll,et al.  Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration , 2014 .

[34]  P. Döll,et al.  Global‐scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites , 2014 .

[35]  Huadong Guo,et al.  Reconstructed Terrestrial Water Storage Change (ΔTWS) from 1948 to 2012 over the Amazon Basin with the Latest GRACE and GLDAS Products , 2015, Water Resources Management.

[36]  B. Cook,et al.  Reply to Comment on ‘Drought variability in the eastern Australia and New Zealand summer drought atlas (ANZDA, CE 1500–2012) modulated by the Interdecadal Pacific Oscillation’ , 2015 .

[37]  M. Decker Development and evaluation of a new soil moisture and runoff parameterization for the CABLE LSM including subgrid‐scale processes , 2015 .

[38]  Wenji Zhao,et al.  Subregional‐scale groundwater depletion detected by GRACE for both shallow and deep aquifers in North China Plain , 2015 .

[39]  X. Kuang,et al.  Increased Water Storage in the Qaidam Basin, the North Tibet Plateau from GRACE Gravity Data , 2015, PloS one.

[40]  Xi Chen,et al.  Evaluation of GLDAS-1 and GLDAS-2 Forcing Data and Noah Model Simulations over China at the Monthly Scale , 2016 .

[41]  J. Zeng,et al.  Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau , 2016 .

[42]  R. Müller,et al.  Evaluation of Radiation Components in a Global Freshwater Model with Station-Based Observations , 2016 .

[43]  B. Scanlon,et al.  Global evaluation of new GRACE mascon products for hydrologic applications , 2016 .

[44]  Srinivas Bettadpur,et al.  High‐resolution CSR GRACE RL05 mascons , 2016 .

[45]  Alka Singh,et al.  Water Budget Analysis within the Surrounding of Prominent Lakes and Reservoirs from Multi-Sensor Earth Observation Data and Hydrological Models: Case Studies of the Aral Sea and Lake Mead , 2016, Remote. Sens..

[46]  Martha C. Anderson,et al.  Assimilation of Gridded GRACE Terrestrial Water Storage Estimates in the North American Land Data Assimilation System , 2016 .

[47]  Y. Hong,et al.  Have GRACE satellites overestimated groundwater depletion in the Northwest India Aquifer? , 2016, Scientific Reports.

[48]  M. Kamruzzaman,et al.  Trends in sub-daily precipitation in Tasmania using regional dynamically downscaled climate projections , 2017 .

[49]  Peng Yang,et al.  Monitoring the spatio-temporal changes of terrestrial water storage using GRACE data in the Tarim River basin between 2002 and 2015. , 2017, The Science of the total environment.

[50]  P. Tregoning,et al.  Improved water balance component estimates through joint assimilation of GRACE water storage and SMOS soil moisture retrievals , 2017 .

[51]  Khandu,et al.  Hydrogeological characterisation of groundwater over Brazil using remotely sensed and model products. , 2017, The Science of the total environment.

[52]  Frédéric Frappart,et al.  Monitoring Groundwater Storage Changes Using the Gravity Recovery and Climate Experiment (GRACE) Satellite Mission: A Review , 2018, Remote. Sens..

[53]  Shin‐Chan Han,et al.  On the use of the GRACE normal equation of inter-satellite tracking data for estimation of soil moisture and groundwater in Australia , 2018 .

[54]  R. Reedy,et al.  Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data , 2018, Proceedings of the National Academy of Sciences.

[55]  Shin‐Chan Han,et al.  Statistical Downscaling of GRACE‐Derived Groundwater Storage Using ET Data in the North China Plain , 2018, Journal of Geophysical Research: Atmospheres.

[56]  M. Rodell,et al.  Long-term, non-anthropogenic groundwater storage changes simulated by three global-scale hydrological models , 2019, Scientific Reports.

[57]  H. Gong,et al.  Detection of large-scale groundwater storage variability over the karstic regions in Southwest China , 2019, Journal of Hydrology.

[58]  B. He,et al.  Performance of Various Forms of the Palmer Drought Severity Index in China from 1961 to 2013 , 2019, Journal of Hydrometeorology.