A viewpoint: Why chlorophyll a?

[1]  A. Kania,et al.  Understanding chlorophylls: central magnesium ion and phytyl as structural determinants. , 2008, Biochimica et biophysica acta.

[2]  Y. Takano,et al.  Evidence of Global Chlorophyll d , 2008, Science.

[3]  J. Lanyi,et al.  Xanthorhodopsin: a bacteriorhodopsin-like proton pump with a carotenoid antenna. , 2008, Biochimica et biophysica acta.

[4]  M. Mimuro,et al.  Characterization of Highly Purified Photosystem I Complexes from the Chlorophyll d-dominated Cyanobacterium Acaryochloris marina MBIC 11017* , 2008, Journal of Biological Chemistry.

[5]  E. Schlodder,et al.  The primary electron donor of photosystem II of the cyanobacterium Acaryochloris marina is a chlorophyll d and the water oxidation is driven by a chlorophyll a/chlorophyll d heterodimer. , 2008, The journal of physical chemistry. B.

[6]  A. van Hoek,et al.  Determination of the excitation migration time in Photosystem II consequences for the membrane organization and charge separation parameters. , 2008, Biochimica et biophysica acta.

[7]  V. Pecoraro,et al.  In search of elusive high-valent manganese species that evaluate mechanisms of photosynthetic water oxidation. , 2008, Inorganic chemistry.

[8]  J. Barber Crystal structure of the oxygen-evolving complex of photosystem II. , 2008, Inorganic chemistry.

[9]  Lawrence E. Page,et al.  Niche adaptation and genome expansion in the chlorophyll d-producing cyanobacterium Acaryochloris marina , 2008, Proceedings of the National Academy of Sciences.

[10]  Fabrice Rappaport,et al.  Primary photochemistry and energetics leading to the oxidation of the (Mn)4Ca cluster and to the evolution of molecular oxygen in Photosystem II , 2008 .

[11]  Tatsuya Uzumaki,et al.  Function of chlorophyll d in reaction centers of photosystems I and II of the oxygenic photosynthesis of Acaryochloris marina. , 2007, Biochemistry.

[12]  I. Vass,et al.  Molecular Mechanisms of Light Stress of Photosynthesis , 2007, Annals of the New York Academy of Sciences.

[13]  Masahiko Taniguchi,et al.  Effects of Substituents on Synthetic Analogs of Chlorophylls. Part 2: Redox Properties, Optical Spectra and Electronic Structure , 2007, Photochemistry and photobiology.

[14]  Lucas J Stal,et al.  Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule , 2007, The ISME Journal.

[15]  Tadashi Watanabe,et al.  Redox potential of chlorophyll d in vitro. , 2007, Biochimica et biophysica acta.

[16]  J. Barber,et al.  Both chlorophylls a and d are essential for the photochemistry in photosystem II of the cyanobacteria, Acaryochloris marina. , 2007, Biochimica et biophysica acta.

[17]  Min Chen,et al.  Theoretical study on the thermodynamic properties of chlorophyll d-peptides coordinating ligand. , 2007, Biochimica et biophysica acta.

[18]  Min Chen,et al.  Chlorophylls, ligands and assembly of light-harvesting complexes in chloroplasts , 2007, Photosynthesis Research.

[19]  D. Kirilovsky Photoprotection in cyanobacteria: the orange carotenoid protein (OCP)-related non-photochemical-quenching mechanism , 2007, Photosynthesis Research.

[20]  Nathan Nelson,et al.  The structure of a plant photosystem I supercomplex at 3.4 Å resolution , 2007, Nature.

[21]  J. Heidelberg,et al.  The ISME Journal: Multidisciplinary Journal of Microbial Ecology , 2007, The ISME Journal.

[22]  M. Mimuro,et al.  Identification of the special pair of photosystem II in a chlorophyll d-dominated cyanobacterium , 2007, Proceedings of the National Academy of Sciences.

[23]  W. Kühlbrandt,et al.  Carotenoid radical cations as a probe for the molecular mechanism of nonphotochemical quenching in oxygenic photosynthesis. , 2007, The journal of physical chemistry. B.

[24]  W. Martin,et al.  Out of Thin Air , 2008, Science.

[25]  Giovanna Tinetti,et al.  Spectral signatures of photosynthesis. II. Coevolution with other stars and the atmosphere on extrasolar worlds. , 2007, Astrobiology.

[26]  Govindjee,et al.  Spectral signatures of photosynthesis. I. Review of Earth organisms. , 2007, Astrobiology.

[27]  Jason Raymond,et al.  Conservation of distantly related membrane proteins: photosynthetic reaction centers share a common structural core. , 2006, Molecular biology and evolution.

[28]  Y. Kawarabayasi,et al.  Crystal structure of archaeal photolyase from Sulfolobus tokodaii with two FAD molecules: implication of a novel light-harvesting cofactor. , 2006, Journal of molecular biology.

[29]  A. Murakami,et al.  Molecular Detection of Epiphytic Acaryochloris spp. on Marine Macroalgae , 2006, Applied and Environmental Microbiology.

[30]  M. G. Müller,et al.  Kinetics and mechanism of electron transfer in intact photosystem II and in the isolated reaction center: pheophytin is the primary electron acceptor. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[31]  M. G. Müller,et al.  Charge separation kinetics in intact photosystem II core particles is trap-limited. A picosecond fluorescence study. , 2006, Biochemistry.

[32]  W. Lubitz,et al.  Ultrafast transient absorption studies on photosystem I reaction centers from Chlamydomonas reinhardtii. 2: mutations near the P700 reaction center chlorophylls provide new insight into the nature of the primary electron donor. , 2006, Biophysical journal.

[33]  Jan Kern,et al.  Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II , 2005, Nature.

[34]  M. Grabolle,et al.  Energetics of primary and secondary electron transfer in Photosystem II membrane particles of spinach revisited on basis of recombination-fluorescence measurements. , 2005, Biochimica et biophysica acta.

[35]  Tadashi Watanabe,et al.  Significant species‐dependence of P700 redox potential as verified by spectroelectrochemistry: Comparison of spinach and Theromosynechococcus elongatus , 2005, FEBS letters.

[36]  W. Lubitz,et al.  Charge recombination fluorescence in photosystem I reaction centers from Chlamydomonas reinhardtii. , 2005, The journal of physical chemistry. B.

[37]  E. Knapp,et al.  Redox potentials of chlorophylls in the photosystem II reaction center. , 2005, Biochemistry.

[38]  A. Larkum,et al.  Influence of structure on binding of chlorophylls to peptide ligands. , 2005, Journal of the American Chemical Society.

[39]  Robert E. Blankenship,et al.  Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Nathan Nelson,et al.  Evolution of photosystem I – from symmetry through pseudosymmetry to asymmetry , 2004, FEBS letters.

[41]  Jason Raymond,et al.  The evolutionary development of the protein complement of photosystem 2. , 2004, Biochimica et biophysica acta.

[42]  James Barber,et al.  Architecture of the Photosynthetic Oxygen-Evolving Center , 2004, Science.

[43]  Zhenfeng Liu,et al.  Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution , 2004, Nature.

[44]  A. Murakami,et al.  Chlorophyll d in an Epiphytic Cyanobacterium of Red Algae , 2004, Science.

[45]  J. Barber,et al.  Structure of a photosystem II supercomplex isolated from Prochloron didemni retaining its chlorophyll a/b light-harvesting system , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Su Lin,et al.  Energy and electron transfer in photosystem II of a chlorophyll b-containing Synechocystis sp. PCC 6803 mutant. , 2003, Biochemistry.

[47]  P. Faller,et al.  Photosystem II: evolutionary perspectives. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[48]  John R. Evans,et al.  Profiles of light absorption and chlorophyll within spinach leaves from chlorophyll fluorescence , 2002 .

[49]  Fabrice Rappaport,et al.  Kinetics and pathways of charge recombination in photosystem II. , 2002, Biochemistry.

[50]  I. Moya,et al.  Iron deficiency interrupts energy transfer from a disconnected part of the antenna to the rest of Photosystem II , 2001, Photosynthesis Research.

[51]  P. Fromme,et al.  Structure of photosystem I. , 2001, Biochimica et biophysica acta.

[52]  P. Chitnis,et al.  Kinetics of charge separation and A0- --> A1 electron transfer in photosystem I reaction centers. , 2001, Biochemistry.

[53]  Petra Fromme,et al.  Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution , 2001, Nature.

[54]  H. Scheer,et al.  Design, synthesis and properties of synthetic chlorophyll proteins. , 2001, European journal of biochemistry.

[55]  M. Ikeuchi,et al.  Chlorophyll b Expressed in Cyanobacteria Functions as a Light-harvesting Antenna in Photosystem I through Flexibility of the Proteins* , 2001, The Journal of Biological Chemistry.

[56]  K. Asada The water-water cycle as alternative photon and electron sinks. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[57]  J. Nishio,et al.  Why are higher plants green? Evolution of the higher plant photosynthetic pigment complement. , 2000 .

[58]  R. Douglas,et al.  Enhanced retinal longwave sensitivity using a chlorophyll-derived photosensitiser in Malacosteus niger, a deep-sea dragon fish with far red bioluminescence , 1999, Vision Research.

[59]  M. Schilstra,et al.  Similarity between electron donor side reactions in the solubilized Photosystem II–LHC II supercomplex and Photosystem-II-containing membranes , 1999, Photosynthesis Research.

[60]  Q. Hu,et al.  A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[61]  K. Brettel,et al.  Electron transfer and arrangement of the redox cofactors in photosystem I , 1997 .

[62]  L. Qin,et al.  Photoinduced electron transfer from the triplet state of zinc cytochrome c to ferricytochrome b5 is gated by configurational fluctuations of the diprotein complex. , 1994, Biochemistry.

[63]  C. Rebeiz,et al.  Chloroplast biogenesis: determination of the molar extinction coefficients of divinyl chlorophyll a and b and their pheophytins. , 1992, Analytical biochemistry.

[64]  Govindjee,et al.  Primary charge separation in isolated photosystem II reaction centers , 1992 .

[65]  Govindjee,et al.  Light Emission by Plants and Bacteria , 1986 .

[66]  Lars Olof Björn,et al.  Measurement of light gradients and spectral regime in plant-tissue with a fiber optic probe , 1984 .

[67]  K. Kirschfeld,et al.  Sensitizing pigment in the fly , 1983, Biophysics of structure and mechanism.

[68]  M Seyfried,et al.  Light gradients in plant tissue. , 1983, Applied optics.

[69]  A. Crofts,et al.  Measurement of the midpoint potential of the pheophytin acceptor of photosystem II , 1981 .

[70]  A. Steiner,et al.  UV fine structure of the spectral sensitivity of flies visual cells , 1980, Naturwissenschaften.

[71]  William W. Ward,et al.  SPECTROPHOTOMETRIC IDENTITY OF THE ENERGY TRANSFER CHROMOPHORES IN RENILLA AND AEQUOREA GREEN‐FLUORESCENT PROTEINS , 1980 .

[72]  William W. Ward,et al.  ENERGY TRANSFER VIA PROTEIN‐PROTEIN INTERACTION IN RENILLA BIOLUMINESCENCE , 1978 .

[73]  B. Kê,et al.  Electrochemical and spectro-kinetic evidence for an intermediate electron acceptor in photosystem I. , 1977, Biochimica et biophysica acta.

[74]  K. Niklas,et al.  Flavonoids and Other Chemical Constituents of Fossil Miocene Zelkova (Ulmaceae) , 1977, Science.

[75]  E. Ruby,et al.  A luminous bacterium that emits yellow light. , 1977, Science.

[76]  L. Björn,et al.  Light-induced absorption changes in etiolated Coleoptiles , 1976 .

[77]  D. Mauzerall Chlorophyll and Photosynthesis , 1976 .

[78]  D. Mauzerall WHY CHLOROPHYLL? , 1973, Annals of the New York Academy of Sciences.

[79]  C. Weiss The Pi electron structure and absorption spectra of chlorophylls in solution , 1972 .

[80]  C. Houssier,et al.  Circular dichroism and magnetic circular dichroism of the chlorophyll and protochlorophyll pigments , 1970 .

[81]  R. Knox Thermodynamics and the primary processes of photosynthesis. , 1969, Biophysical journal.

[82]  R. T. Ross,et al.  Thermodynamics of light emission and free-energy storage in photosynthesis. , 1967, Biophysical journal.

[83]  M. Gouterman,et al.  SELF-CONSISTENT MOLECULAR ORBITAL CALCULATIONS OF PORPHYRIN AND RELATED RING SYSTEMS. , 1965 .

[84]  S. Brody,et al.  Excitation lifetime of photosynthetic pigments in vitro and in vivo. , 1957, Science.

[85]  H. Scheer,et al.  De novo Designed Bacteriochlorophyll-Binding Helix-Bundle Proteins , 2009 .

[86]  F. Daldal,et al.  The purple phototrophic bacteria , 2009 .

[87]  L. Björn,et al.  Spectral Tuning in Biology , 2008 .

[88]  Lars Olof Björn,et al.  The Evolution of Photosynthesis and Its Environmental Impact , 2008 .

[89]  J. Garrido,et al.  Chlorophyll c Pigments: Current Status , 2006 .

[90]  J. Golbeck Photosystem I : the light-driven plastocyanin : ferredoxin oxidoreductase , 2006 .

[91]  A. Larkum The Evolution of Chlorophylls and Photosynthesis , 2006 .

[92]  H. Scheer An Overview of Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications , 2006 .

[93]  H. Scheer,et al.  Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications , 2006 .

[94]  B. Keely Geochemistry of Chlorophylls , 2006 .

[95]  Petra Fromme,et al.  Structure of cyanobacterial Photosystem I , 2005, Photosynthesis Research.

[96]  K. Satoh,et al.  Photosystem II, the Light-Driven Water: Plastoquinone Oxidoreductase , 2005 .

[97]  R. van Grondelle,et al.  Primary charge separation in Photosystem II , 2004, Photosynthesis Research.

[98]  J. Olson,et al.  Thinking About the Evolution of Photosynthesis , 2004, Photosynthesis Research.

[99]  W. W. Adams,et al.  Chlorophyll Fluorescence as a Tool to Monitor Plant Response to the Environment , 2004 .

[100]  G. Papageorgiou Fluorescence of Photosynthetic Pigments in Vitro and in Vivo , 2004 .

[101]  A. Gilmore Excess Light Stress: Probing Excitation Dissipation Mechanisms through Global Analysis of Time- and Wavelength-Resolved Chlorophyll a Fluorescence , 2004 .

[102]  Xiao-Ping Li,et al.  Using Mutants to Understand Light Stress Acclimation in Plants , 2004 .

[103]  Janet L. Smith,et al.  Structure of the cytochrome b6f complex: new prosthetic groups, Q-space, and the ‘hors d’oeuvres hypothesis’ for assembly of the complex , 2004, Photosynthesis Research.

[104]  J. Argyroudi-Akoyunoglou,et al.  Assembly of Light-Harvesting Complexes of Photosystem II and the Role of Chlorophyll b , 2004 .

[105]  Seymour Steven Brody,et al.  Fluorescence lifetime, yield, energy transfer and spectrum in photosynthesis, 1950–1960* , 2004, Photosynthesis Research.

[106]  J. Raven,et al.  Photosynthesis in Algae , 2003, Advances in Photosynthesis and Respiration.

[107]  William W. Parson,et al.  Light-Harvesting Antennas in Photosynthesis , 2003, Advances in Photosynthesis and Respiration.

[108]  L. Björn Photobiology : the science of light and life , 2002 .

[109]  G. Schmuck,et al.  Time-resolved chlorophyll fluorescence spectra of intact leaves , 1994 .

[110]  Thomas C. Vogelmann,et al.  Plant Tissue Optics , 1993 .

[111]  L. Shipman Electronic Structure and Function of Chlorophylls and Their Pheophytins , 1982 .

[112]  Martin Gouterman,et al.  1 – Optical Spectra and Electronic Structure of Porphyrins and Related Rings , 1978 .

[113]  M. J. Cormier,et al.  In vitro energy transfer in Renilla bioluminescence , 1976 .

[114]  L. Björn Why are plants green - relationships between pigment absorption and photosynthetic efficiency , 1976 .

[115]  V. Bryson,et al.  Evolving Genes and Proteins. , 1965, Science.

[116]  S. Granick Evolution of Heme and Chlorophyll , 1965 .

[117]  Martin Gouterman,et al.  Spectra of porphyrins , 1961 .

[118]  A. Treibs Über das Vorkommen von Chlorophyllderivaten in einem Ölschiefer aus der oberen Trias , 1934 .