Fe‐Based Tunnel‐Type Na0.61[Mn0.27Fe0.34Ti0.39]O2 Designed by a New Strategy as a Cathode Material for Sodium‐Ion Batteries

Sodium‐ion batteries are promising for grid‐scale storage applications due to the natural abundance and low cost of sodium. However, few electrodes that can meet the requirements for practical applications are available today due to the limited routes to exploring new materials. Here, a new strategy is proposed through partially/fully substituting the redox couple of existing negative electrodes in their reduced forms to design the corresponding new positive electrode materials. The power of this strategy is demonstrated through the successful design of new tunnel‐type positive electrode materials of Na0.61[Mn0.61‐xFexTi0.39]O2, composed of non‐toxic and abundant elements: Na, Mn, Fe, Ti. In particular, the designed air‐stable Na0.61[Mn0.27Fe0.34Ti0.39]O2 shows a usable capacity of ≈90 mAh g−1, registering the highest value among the tunnel‐type oxides, and a high storage voltage of 3.56 V, corresponding to the Fe3+/Fe4+ redox couple realized for the first time in non‐layered oxides, which was confirmed by X‐ray absorption spectroscopy and Mössbauer spectroscopy. This new strategy would open an exciting route to explore electrode materials for rechargeable batteries.

[1]  Lin Gu,et al.  Air‐Stable Copper‐Based P2‐Na7/9Cu2/9Fe1/9Mn2/3O2 as a New Positive Electrode Material for Sodium‐Ion Batteries , 2015, Advanced science.

[2]  Yuesheng Wang,et al.  Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries , 2015, Nature Communications.

[3]  Yong‐Sheng Hu,et al.  Novel copper redox-based cathode materials for room-temperature sodium-ion batteries , 2014 .

[4]  K. Kubota,et al.  New O2/P2‐type Li‐Excess Layered Manganese Oxides as Promising Multi‐Functional Electrode Materials for Rechargeable Li/Na Batteries , 2014 .

[5]  Shin-ichi Nishimura,et al.  A 3.8-V earth-abundant sodium battery electrode , 2014, Nature Communications.

[6]  K. Kubota,et al.  Layered oxides as positive electrode materials for Na-ion batteries , 2014 .

[7]  K. Kubota,et al.  P2-type Na(2/3)Ni(1/3)Mn(2/3-x)Ti(x)O2 as a new positive electrode for higher energy Na-ion batteries. , 2014, Chemical communications.

[8]  Xiqian Yu,et al.  Identifying the Critical Role of Li Substitution in P2− Na x (Li y Ni z Mn 1−y−z )O 2 (0 < x, y, z < 1) Intercalation Cathode Materials for High-Energy Na-Ion Batteries , 2014 .

[9]  Masayoshi Ishida,et al.  Novel titanium-based O3-type NaTi(0.5)Ni(0.5)O2 as a cathode material for sodium ion batteries. , 2014, Chemical communications.

[10]  M. Armand,et al.  An approach to overcome first cycle irreversible capacity in P2-Na2/3[Fe1/2Mn1/2]O2 , 2013 .

[11]  Hiroaki Yoshida,et al.  NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries☆ , 2013 .

[12]  Xia Lu,et al.  Sodium Storage and Transport Properties in Layered Na2Ti3O7 for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[13]  Yuesheng Wang,et al.  A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries , 2013, Nature Communications.

[14]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[15]  Teófilo Rojo,et al.  Update on Na-based battery materials. A growing research path , 2013 .

[16]  John B Goodenough,et al.  Evolution of strategies for modern rechargeable batteries. , 2013, Accounts of chemical research.

[17]  Y. Chiang,et al.  Towards High Power High Energy Aqueous Sodium‐Ion Batteries: The NaTi2(PO4)3/Na0.44MnO2 System , 2013 .

[18]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[19]  Michel Armand,et al.  A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries , 2013, Nature Communications.

[20]  Jing Zhou,et al.  Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[21]  Tatsuya Saito,et al.  High power Na-ion rechargeable battery with single-crystalline Na0.44MnO2 nanowire electrode , 2012 .

[22]  Hiroaki Yoshida,et al.  Crystal Structures and Electrode Performance of Alpha-NaFeO2 for Rechargeable Sodium Batteries , 2012 .

[23]  M. Armand,et al.  Disodium Terephthalate (Na2C8H4O4) as High Performance Anode Material for Low‐Cost Room‐Temperature Sodium‐Ion Battery , 2012 .

[24]  Shin-ichi Nishimura,et al.  High‐Voltage Pyrophosphate Cathodes , 2012 .

[25]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[26]  Dong-Hwa Seo,et al.  New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. , 2012, Journal of the American Chemical Society.

[27]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[28]  Jean-Marie Tarascon,et al.  Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi1/3Mn1/3Co1/3O2 , 2012 .

[29]  Dong-Hwa Seo,et al.  Ab Initio Study of the Sodium Intercalation and Intermediate Phases in Na0.44MnO2 for Sodium-Ion Battery , 2012 .

[30]  B. Hwang,et al.  The P2-Na(2/3)Co(2/3)Mn(1/3)O2 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery. , 2011, Dalton transactions.

[31]  Anubhav Jain,et al.  Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials , 2011 .

[32]  Zhenguo Yang,et al.  Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life , 2011, Advanced materials.

[33]  Donghan Kim,et al.  Enabling Sodium Batteries Using Lithium‐Substituted Sodium Layered Transition Metal Oxide Cathodes , 2011 .

[34]  H. Hayakawa,et al.  Single-Crystal Synthesis and Structure Refinement of Na0.44MnO2 , 2011 .

[35]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[36]  Qiliang Li,et al.  The tunnel manganese oxide Na4.32Mn9O18: a new Na+ site discovered by single-crystal X-ray diffraction. , 2011, Acta crystallographica. Section C, Crystal structure communications.

[37]  Gerbrand Ceder,et al.  Opportunities and challenges for first-principles materials design and applications to Li battery materials , 2010 .

[38]  Shinichi Komaba,et al.  Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2 , 2010 .

[39]  M. Doeff,et al.  Electrode Materials with the Na0.44MnO2 Structure: Effect ofTitanium Substitution on Physical and Electrochemical Properties , 2008 .

[40]  M. Armand,et al.  Building better batteries , 2008, Nature.

[41]  J. Tarascon,et al.  Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2. , 2007, Inorganic chemistry.

[42]  M Newville,et al.  IFEFFIT: interactive XAFS analysis and FEFF fitting. , 2001, Journal of synchrotron radiation.

[43]  Marca M. Doeff,et al.  Orthorhombic Na x MnO2 as a Cathode Material for Secondary Sodium and Lithium Polymer Batteries , 1994 .

[44]  M. Fouletier,et al.  Electrochemical intercalation of sodium in graphite , 1988 .

[45]  A. Mendiboure,et al.  Electrochemical intercalation and deintercalation of NaxMnO2 bronzes , 1985 .

[46]  P. Hagenmuller,et al.  Etude par desintercalation electrochimique des systemes NaxCrO2 et NaxNiO2 , 1982 .

[47]  P. Hagenmuller,et al.  Electrochemical intercalation of sodium in NaxCoO2 bronzes , 1981 .

[48]  P. Hagenmuller,et al.  Sur quelques nouvelles phases de formule NaxMnO2 (x ⩽ 1) , 1971 .

[49]  K. Kang,et al.  Sodium Storage Behavior in Natural Graphite using Ether‐based Electrolyte Systems , 2015 .

[50]  Yuesheng Wang,et al.  Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries , 2015 .

[51]  C. Delmas,et al.  Structural and Electrochemical Characterizations of P2 and New O3-NaxMn1-yFeyO2 Phases Prepared by Auto-Combustion Synthesis for Na-Ion Batteries , 2013 .

[52]  Donghan Kim,et al.  Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application , 2012 .

[53]  P. Hagenmuller,et al.  Structural classification and properties of the layered oxides , 1980 .