Stress-Induced Self-Magnetic Flux Leakage at Stress Concentration Zone
暂无分享,去创建一个
The residual magnetization technique is a new method for detecting stress concentration zones (SCZs) in ferromagnetic materials. Local rising of stress at SCZs, such as cracks, results in the development of local elastic and plastic deformation. The two deformation regimes produce different magnetic characteristics, which have competing effects on self-magnetic-flux-leakage signals. In the present research, samples with three different groove depths were subjected to different tensile stress levels. A surface scanning system was used to record the variation of magnetic signals at grooves of varying depth under steadily increasing stress conditions. The results show that elastic deformation increases peak-to-peak values of normal magnetic components and a maximum gradient of the normal magnetic component in the direction of applied stress, while the development of local plastic deformation reduces signal intensity at groove locations. The magnetic object (MO) model is used to explain the mechanism for excess flux leakage field at SCZs as being due to the conversion of magnetoelastic energy—introduced by the application of tensile stress up to the local yield point—into magnetostatic surface poles that are sensed as an increase in the normal component of leakage.