The loss and depth of CO2 ice in comet nuclei

[1]  P. Weissman,et al.  Numerical simulation of cometary nuclei: III. Internal temperatures of cometary nuclei , 1987 .

[2]  S. Squyres,et al.  Methods for computing comet core temperatures. , 1986, Icarus.

[3]  F. Fanale,et al.  A model of cometary gas and dust production and nongravitational forces with application to P/Halley , 1986 .

[4]  W. Ip,et al.  The chemical differentiation of the cometary nucleus: the process and its consequences , 1985 .

[5]  S. Squyres,et al.  Temperatures within comet nuclei. , 1985, Journal of geophysical research.

[6]  F. Fanale,et al.  An idealized short-period comet model - Surface insolation, H2O flux, dust flux, and mantle evolution , 1984 .

[7]  E. Kührt Temperature profiles and thermal stresses in cometary nuclei , 1984 .

[8]  R. Smoluchowski Heat Transport in Porous Cometary Nuclei , 1982 .

[9]  Hugh H. Kieffer,et al.  Thermal modeling of cometary nuclei , 1981 .

[10]  R. Smoluchowski Heat content and evolution of cometary nuclei , 1981 .

[11]  J. Klinger Some consequences of a phase transition of water ice on the heat balance of comet nuclei , 1981 .

[12]  R. Smoluchowski Amorphous ice and the behavior of cometary nuclei , 1981 .

[13]  A. Delsemme,et al.  Albedos and Cross-sections for the Nuclei of Comets 1969 IX, 1970 II and 19711 , 1973 .

[14]  B. G. Marsden,et al.  Comets and nongravitational forces , 1971 .

[15]  B. Marsden Comets and Nongravitational Forces. III , 1968 .

[16]  Adrian E. Scheidegger,et al.  The physics of flow through porous media , 1957 .

[17]  N. T. Bobrovnikoff The Red Titanium Oxide System in α_{1} Herculis , 1933 .