FSAI-based parallel Mixed Constraint Preconditioners for saddle point problems arising in geomechanics

In this paper we propose and describe a parallel implementation of a block preconditioner for the solution of saddle point linear systems arising from Finite Element (FE) discretization of 3D coupled consolidation problems. The Mixed Constraint Preconditioner developed in [L. Bergamaschi, M. Ferronato, G. Gambolati, Mixed constraint preconditioners for the solution to FE coupled consolidation equations, J. Comput. Phys., 227(23) (2008), 9885-9897] is combined with the parallel FSAI preconditioner which is used here to approximate the inverses of both the structural (1, 1) block and an appropriate Schur complement matrix. The resulting preconditioner proves effective in the acceleration of the BiCGSTAB iterative solver. Numerical results on a number of test cases of size up to 2x10^6 unknowns and 1.2x10^8 nonzeros show the perfect scalability of the overall code up to 256 processors.

[1]  Domenico Baù,et al.  Basin-scale compressibility of the northern Adriatic by the radioactive marker technique , 2002 .

[2]  Luca Bergamaschi,et al.  Erratum to: Inexact constraint preconditioners for linear systems arising in interior point methods , 2011, Comput. Optim. Appl..

[3]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[4]  Luca Bergamaschi,et al.  On eigenvalue distribution of constraint‐preconditioned symmetric saddle point matrices , 2012, Numer. Linear Algebra Appl..

[5]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[6]  L. Kolotilina,et al.  Factorized Sparse Approximate Inverse Preconditionings I. Theory , 1993, SIAM J. Matrix Anal. Appl..

[7]  Luca Bergamaschi,et al.  Mixed Constraint Preconditioners for the iterative solution of FE coupled consolidation equations , 2008, J. Comput. Phys..

[8]  Nicholas I. M. Gould,et al.  Constraint Preconditioning for Indefinite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  A. Yu. Yeremin,et al.  Factorized sparse approximate inverse preconditionings. IV: Simple approaches to rising efficiency , 1999 .

[11]  Lily Yu. Kolotilina,et al.  Factorized sparse approximate inverse preconditionings. IV: Simple approaches to rising efficiency , 1999, Numer. Linear Algebra Appl..

[12]  Jan Vlcek,et al.  Indefinitely preconditioned inexact Newton method for large sparse equality constrained non-linear programming problems , 1998, Numer. Linear Algebra Appl..

[13]  Ilaria Perugia,et al.  Block-diagonal and indefinite symmetric preconditioners for mixed finite element formulations , 2000, Numer. Linear Algebra Appl..

[14]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[16]  Wen Lea Pearn,et al.  (Journal of Computational and Applied Mathematics,228(1):274-278)Optimization of the T Policy M/G/1 Queue with Server Breakdowns and General Startup Times , 2009 .

[17]  Luca Bergamaschi,et al.  Novel preconditioners for the iterative solution to FE-discretized coupled consolidation equations , 2007 .

[18]  L. Luksan,et al.  Indefinitely preconditioned inexact Newton method for large sparse equality constrained non‐linear programming problems , 1998 .

[19]  Luca Bergamaschi,et al.  Preconditioning Indefinite Systems in Interior Point Methods for Optimization , 2004, Comput. Optim. Appl..

[20]  V. Simoncini,et al.  Block--diagonal and indefinite symmetric preconditioners for mixed finite element formulations , 1999 .

[21]  Michele Benzi,et al.  A Sparse Approximate Inverse Preconditioner for the Conjugate Gradient Method , 1996, SIAM J. Sci. Comput..

[22]  A. A. Nikishin,et al.  Factorized sparse approximate inverse preconditionings. III. Iterative construction of preconditioners , 2000 .

[23]  Luca Bergamaschi,et al.  Parallel Acceleration of Krylov Solvers by Factorized Approximate Inverse Preconditioners , 2004, VECPAR.

[24]  Luca Bergamaschi,et al.  An Efficient Parallel MLPG Method for Poroelastic Models , 2009 .