A simple ordered data estimator for inverse density weighted expectations

We consider estimation of means of functions that are scaled by an unknown density, or equivalently, integrals of conditional expectations. The "ordered data" estimator we provide is root n consistent, asymptotically normal, and is numerically extremely simple, involving little more than ordering the data and summing the results. No sample size dependent smoothing is required. A similarly simple estimator is provided for the limiting variance. The proofs include new limiting distribution results for functions of nearest neighbor spacings. Potential applications include endogeneous binary choice, willingness to pay, selection, and treatment models.

[1]  W. Newey,et al.  The asymptotic variance of semiparametric estimators , 1994 .

[2]  A. Tsybakov,et al.  Bandwidth Choice for Average Derivative Estimation , 1992 .

[3]  Jianqing Fan,et al.  On automatic boundary corrections , 1997 .

[4]  A. Lewbel,et al.  Endogenous selection or treatment model estimation , 2007 .

[5]  Joel L. Horowitz,et al.  Bandwidth Selection in Semiparametric Estimation of Censored Linear Regression Models , 1990, Econometric Theory.

[6]  H. White,et al.  ASYMPTOTIC DISTRIBUTION THEORY FOR NONPARAMETRIC ENTROPY MEASURES OF SERIAL DEPENDENCE , 2005 .

[7]  W. Newey,et al.  Density Weighted Linear Least Squares , 1994 .

[8]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[9]  H. Müller,et al.  Convolution type estimators for nonparametric regression , 1988 .

[10]  Guido W. Imbens,et al.  EFFICIENT ESTIMATION OF AVERAGE TREATMENT EFFECTS , 2003 .

[11]  P. Bickel,et al.  Sums of Functions of Nearest Neighbor Distances, Moment Bounds, Limit Theorems and a Goodness of Fit Test , 1983 .

[12]  W. Newey,et al.  Nonparametric Estimation of Exact Consumers Surplus and Deadweight Loss by , 2009 .

[13]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[14]  P. Barbe Joint approximation of processes based on spacings and order statistics , 1994 .

[15]  Adonis Yatchew,et al.  An elementary estimator of the partial linear model , 1997 .

[16]  E. Maurin,et al.  Parental Income and School Attendance in a Low-Income Country: A semi-parametric analysis , 2001 .

[17]  P. Robinson Asymptotically efficient estimation in the presence of heteroskedasticity of unknown form , 1987 .

[18]  L. Weiss Limiting Distributions of Homogeneous Functions of Sample Spacings , 1958 .

[19]  C. J. Stone,et al.  Consistent Nonparametric Regression , 1977 .

[20]  Arthur Lewbel,et al.  Semiparametric Estimation of Location and Other Discrete Choice Moments , 1997, Econometric Theory.

[21]  Thomas M. Stoker,et al.  Semiparametric Latent Variable Model Estimation with Endogenous or Mismeasured Regressors , 2007 .

[22]  G. Imbens,et al.  Bias-Corrected Matching Estimators for Average Treatment Effects , 2011 .

[23]  G. Imbens,et al.  Large Sample Properties of Matching Estimators for Average Treatment Effects , 2004 .

[24]  W. Newey,et al.  Convergence rates and asymptotic normality for series estimators , 1997 .

[25]  Arthur Lewbel,et al.  Estimating Features of a Distribution from Binomial Data , 2001 .

[26]  Daniel McFadden,et al.  Computing Willingness-to-Pay in Random Utility Models , 1996 .

[27]  M. Priestley,et al.  Non‐Parametric Function Fitting , 1972 .

[28]  Thierry Magnac,et al.  Identification and information in monotone binary models , 2007 .

[29]  Joseph L. Gastwirth,et al.  On a Simple Estimate of the Reciprocal of the Density Function , 1968 .

[30]  A. Lewbel,et al.  Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables , 2000 .

[31]  R. Spady,et al.  AN EFFICIENT SEMIPARAMETRIC ESTIMATOR FOR BINARY RESPONSE MODELS , 1993 .

[32]  P. Hall,et al.  Unified approach to testing functional hypotheses in semiparametric contexts , 2005 .

[33]  J. Stock,et al.  Instrumental Variables Regression with Weak Instruments , 1994 .

[34]  G. Imbens,et al.  Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score , 2000 .