Natural image and receptive field statistics predict saccade sizes

[1]  S. Gandhi,et al.  Contralateral Bias of High Spatial Frequency Tuning and Cardinal Direction Selectivity in Mouse Visual Cortex , 2017, The Journal of Neuroscience.

[2]  Nicholas J. Priebe,et al.  Binocular Disparity Selectivity Weakened after Monocular Deprivation in Mouse V1 , 2017, The Journal of Neuroscience.

[3]  Samuel U. Nummela,et al.  Psychophysical measurement of marmoset acuity and myopia , 2017, Developmental neurobiology.

[4]  Nicholas J. Priebe,et al.  Binocular alignment in mice during stereoscopic discrimination of depth , 2016 .

[5]  Liang She,et al.  Spatial structure of neuronal receptive field in awake monkey secondary visual cortex (V2) , 2016, Proceedings of the National Academy of Sciences.

[6]  Johannes C. Dahmen,et al.  Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex , 2015, Nature Neuroscience.

[7]  Lupeng Wang,et al.  Visual Experience Is Required for the Development of Eye Movement Maps in the Mouse Superior Colliculus , 2015, The Journal of Neuroscience.

[8]  Nicholas J. Priebe,et al.  Local Integration Accounts for Weak Selectivity of Mouse Neocortical Parvalbumin Interneurons , 2015, Neuron.

[9]  Cory T. Miller,et al.  Motion dependence of smooth pursuit eye movements in the marmoset. , 2015, Journal of neurophysiology.

[10]  A. McGee,et al.  Plasticity of Binocularity and Visual Acuity Are Differentially Limited by Nogo Receptor , 2014, The Journal of Neuroscience.

[11]  Joris Vangeneugden,et al.  Orientation-Tuned Surround Suppression in Mouse Visual Cortex , 2014, The Journal of Neuroscience.

[12]  Cory T. Miller,et al.  Active Vision in Marmosets: A Model System for Visual Neuroscience , 2014, The Journal of Neuroscience.

[13]  S. Durand,et al.  Visual Acuity Development and Plasticity in the Absence of Sensory Experience , 2013, The Journal of Neuroscience.

[14]  Bosco S. Tjan,et al.  Rapid and Persistent Adaptability of Human Oculomotor Control in Response to Simulated Central Vision Loss , 2013, Current Biology.

[15]  Michele Rucci,et al.  Decorrelation of retinal response to natural scenes by fixational eye movements , 2013, Proceedings of the National Academy of Sciences.

[16]  Tristan A. Chaplin,et al.  Representation of the visual field in the primary visual area of the marmoset monkey: Magnification factors, point‐image size, and proportionality to retinal ganglion cell density , 2013, The Journal of comparative neurology.

[17]  S. Martinez-Conde,et al.  An oculomotor continuum from exploration to fixation , 2013, Proceedings of the National Academy of Sciences.

[18]  David C. Sterratt,et al.  Standard Anatomical and Visual Space for the Mouse Retina: Computational Reconstruction and Transformation of Flattened Retinae with the Retistruct Package , 2013, PLoS Comput. Biol..

[19]  W. Seiple,et al.  Abnormal Fixation in Individuals With Age-Related Macular Degeneration When Viewing an Image of a Face , 2013, Optometry and vision science : official publication of the American Academy of Optometry.

[20]  N. Crowder,et al.  Orientation specificity of contrast adaptation in mouse primary visual cortex. , 2012, Journal of neurophysiology.

[21]  James J. DiCarlo,et al.  Balanced Increases in Selectivity and Tolerance Produce Constant Sparseness along the Ventral Visual Stream , 2012, The Journal of Neuroscience.

[22]  J. Victor,et al.  Temporal Encoding of Spatial Information during Active Visual Fixation , 2012, Current Biology.

[23]  M. Pardue,et al.  Assessment of Axial Length Measurements in Mouse Eyes , 2012, Optometry and vision science : official publication of the American Academy of Optometry.

[24]  M. Carandini,et al.  Normalization as a canonical neural computation , 2011, Nature Reviews Neuroscience.

[25]  Eero P. Simoncelli,et al.  Cardinal rules: Visual orientation perception reflects knowledge of environmental statistics , 2011, Nature Neuroscience.

[26]  Kenji Kawano,et al.  Initiation of the optokinetic response (OKR) in mice. , 2011, Journal of vision.

[27]  A. R. Rao,et al.  Statistics of natural scenes and cortical color processing. , 2010, Journal of vision.

[28]  Thomas Martinetz,et al.  Variability of eye movements when viewing dynamic natural scenes. , 2010, Journal of vision.

[29]  Y. Chino,et al.  Receptive‐field properties of V1 and V2 neurons in mice and macaque monkeys , 2010, The Journal of comparative neurology.

[30]  Leo L. Lui,et al.  Spatial and temporal frequency tuning in striate cortex: functional uniformity and specializations related to receptive field eccentricity , 2010, The European journal of neuroscience.

[31]  Li I. Zhang,et al.  Visual Receptive Field Structure of Cortical Inhibitory Neurons Revealed by Two-Photon Imaging Guided Recording , 2009, The Journal of Neuroscience.

[32]  Rudolf Groner,et al.  The effect of spatial frequency content on parameters of eye movements , 2008, Psychological research.

[33]  W. M. Keck,et al.  Highly Selective Receptive Fields in Mouse Visual Cortex , 2008, The Journal of Neuroscience.

[34]  Meixiao Shen,et al.  Biometric measurement of the mouse eye using optical coherence tomography with focal plane advancement , 2008, Vision Research.

[35]  D. Tank,et al.  Imaging Large-Scale Neural Activity with Cellular Resolution in Awake, Mobile Mice , 2007, Neuron.

[36]  Tadashi Isa,et al.  Quantitative analysis of spontaneous saccade-like rapid eye movements in C57BL/6 mice , 2007, Neuroscience Research.

[37]  Robert A. Frazor,et al.  Local luminance and contrast in natural images , 2006, Vision Research.

[38]  Xoana G. Troncoso,et al.  ErratumMicrosaccades Counteract Visual Fading during Fixation , 2006 .

[39]  Xoana G. Troncoso,et al.  Microsaccades Counteract Visual Fading during Fixation , 2005, Neuron.

[40]  Robert A. Frazor,et al.  Independence of luminance and contrast in natural scenes and in the early visual system , 2005, Nature Neuroscience.

[41]  D. Ballard,et al.  Eye movements in natural behavior , 2005, Trends in Cognitive Sciences.

[42]  Wilson S. Geisler,et al.  Optimal eye movement strategies in visual search , 2005, Nature.

[43]  R. Douglas,et al.  Developmental plasticity of mouse visual acuity , 2003, The European journal of neuroscience.

[44]  J. Movshon,et al.  Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[45]  T. Gawne,et al.  Responses of primate visual cortical neurons to stimuli presented by flash, saccade, blink, and external darkening. , 2002, Journal of neurophysiology.

[46]  R. Reid,et al.  Saccadic Eye Movements Modulate Visual Responses in the Lateral Geniculate Nucleus , 2002, Neuron.

[47]  Christoph Kayser,et al.  Non-contact eye-tracking on cats , 2001, Journal of Neuroscience Methods.

[48]  Jeffrey S. Perry,et al.  Edge co-occurrence in natural images predicts contour grouping performance , 2001, Vision Research.

[49]  H Barlow,et al.  Redundancy reduction revisited , 2001, Network.

[50]  R. Douglas,et al.  Behavioral assessment of visual acuity in mice and rats , 2000, Vision Research.

[51]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[52]  M. Land Motion and vision: why animals move their eyes , 1999, Journal of Comparative Physiology A.

[53]  P. Lennie,et al.  Rapid adaptation in visual cortex to the structure of images. , 1999, Science.

[54]  R. Masland,et al.  The Major Cell Populations of the Mouse Retina , 1998, The Journal of Neuroscience.

[55]  J. Malpeli,et al.  Effects of saccades on the activity of neurons in the cat lateral geniculate nucleus. , 1998, Journal of neurophysiology.

[56]  J M Findlay,et al.  Saccades without eye movements , 1997, Nature.

[57]  M. Stryker,et al.  Experience-Dependent Plasticity of Binocular Responses in the Primary Visual Cortex of the Mouse , 1996, Journal of Neuroscience.

[58]  Paul R. Martin,et al.  Comparison of photoreceptor spatial density and ganglion cell morphology in the retina of human, macaque monkey, cat, and the marmoset Callithrix jacchus , 1996, The Journal of comparative neurology.

[59]  William Bialek,et al.  Statistics of Natural Images: Scaling in the Woods , 1993, NIPS.

[60]  A. B. Bonds,et al.  Classifying simple and complex cells on the basis of response modulation , 1991, Vision Research.

[61]  A. Hendrickson,et al.  Human photoreceptor topography , 1990, The Journal of comparative neurology.

[62]  B. Boycott,et al.  Cortical magnification factor and the ganglion cell density of the primate retina , 1989, Nature.

[63]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[64]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[65]  J. Movshon,et al.  The statistical reliability of signals in single neurons in cat and monkey visual cortex , 1983, Vision Research.

[66]  D. G. Albrecht,et al.  Spatial frequency selectivity of cells in macaque visual cortex , 1982, Vision Research.

[67]  U. Dräger,et al.  Ganglion cell distribution in the retina of the mouse. , 1981, Investigative ophthalmology & visual science.

[68]  N. Mangini,et al.  Retinotopic organization of striate and extrastriate visual cortex in the mouse , 1980, The Journal of comparative neurology.

[69]  L. Palmer,et al.  The retinotopic organization of area 17 (striate cortex) in the cat , 1978, The Journal of comparative neurology.

[70]  R. Blake,et al.  Abnormal visual resolution in the Siamese cat. , 1976, Science.

[71]  S. Sherman,et al.  Receptive-field characteristics of neurons in cat striate cortex: Changes with visual field eccentricity. , 1976, Journal of neurophysiology.

[72]  K. Albus A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat , 1975, Experimental Brain Research.

[73]  G. F. Cooper,et al.  The spatial selectivity of the visual cells of the cat , 1969, The Journal of physiology.

[74]  C. Blakemore,et al.  The neural mechanism of binocular depth discrimination , 1967, The Journal of physiology.

[75]  A. L. I︠A︡rbus Eye Movements and Vision , 1967 .

[76]  Ching-Jen Chen,et al.  Flow visualization of bubble collapse flow , 2007, J. Vis..

[77]  Nao Ninomiya,et al.  The 10th anniversary of journal of visualization , 2007, J. Vis..

[78]  Andriana Olmos,et al.  A biologically inspired algorithm for the recovery of shading and reflectance images , 2004 .

[79]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[80]  S. Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[81]  Jon H. Kaas,et al.  A Comparative Survey of Visual Cortex Organization in Mammals , 1980 .

[82]  R. L. de Valois,et al.  Psychophysical studies of monkey vision. 3. Spatial luminance contrast sensitivity tests of macaque and human observers. , 1974, Vision research.

[83]  A. L. Yarbus,et al.  Saccadic Eye Movements , 1967 .

[84]  G. L. Walls The evolutionary history of eye movements , 1962 .