Single-cell transcriptomics of human cholesteatoma identifies an activin A-producing osteoclastogenic fibroblast subset inducing bone destruction

[1]  H. Olze,et al.  The Relationship between the M1/M2 Macrophage Polarization and the Degree of Ossicular Erosion in Human Acquired Cholesteatoma: An Immunohistochemical Study , 2022, Journal of clinical medicine.

[2]  T. Pap,et al.  Deletion of activin A in mesenchymal but not myeloid cells ameliorates disease severity in experimental arthritis , 2022, Annals of the Rheumatic Diseases.

[3]  Brad T. Sherman,et al.  DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update) , 2022, Nucleic Acids Res..

[4]  R. Bourgon,et al.  Cross-tissue organization of the fibroblast lineage , 2021, Nature.

[5]  M. Humbert,et al.  An endothelial activin A-bone morphogenetic protein receptor type 2 link is overdriven in pulmonary hypertension , 2021, Nature Communications.

[6]  Danielle Rux,et al.  Activin A promotes the development of acquired heterotopic ossification and is an effective target for disease attenuation in mice , 2021, Science Signaling.

[7]  Joyce B. Kang,et al.  Cross-tissue, single-cell stromal atlas identifies shared pathological fibroblast phenotypes in four chronic inflammatory diseases , 2021, bioRxiv.

[8]  Qipeng Yuan,et al.  Identifying the p65-Dependent Effect of Sulforaphene on Esophageal Squamous Cell Carcinoma Progression via Bioinformatics Analysis , 2020, International journal of molecular sciences.

[9]  Son K. Pham,et al.  BBrowser: Making single-cell data easily accessible , 2020, bioRxiv.

[10]  Abdullah Al Mamun,et al.  Potential caveats of putative microglia-specific markers for assessment of age-related cerebrovascular neuroinflammation , 2020, Journal of neuroinflammation.

[11]  D. Micha,et al.  Activin-A Induces Fewer, but Larger Osteoclasts From Monocytes in Both Healthy Controls and Fibrodysplasia Ossificans Progressiva Patients , 2020, Frontiers in Endocrinology.

[12]  A. Qian,et al.  The Bone Extracellular Matrix in Bone Formation and Regeneration , 2020, Frontiers in Pharmacology.

[13]  K. Miyazono,et al.  TNF‐α enhances TGF‐β‐induced endothelial‐to‐mesenchymal transition via TGF‐β signal augmentation , 2020, Cancer science.

[14]  S. Byers,et al.  Single-Cell Transcriptomic Analysis of Tumor-Derived Fibroblasts and Normal Tissue-Resident Fibroblasts Reveals Fibroblast Heterogeneity in Breast Cancer , 2020, Cancers.

[15]  S. Hirata,et al.  Activin A Expressed in Rheumatoid Synovial Cells Downregulates TNFα-Induced CXCL10 Expression and Osteoclastogenesis , 2020, Pathobiology.

[16]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[17]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[18]  Y. Osaki,et al.  Osteoclasts Modulate Bone Erosion in Cholesteatoma via RANKL Signaling , 2019, Journal of the Association for Research in Otolaryngology.

[19]  S. Raychaudhuri,et al.  Distinct fibroblast subsets drive inflammation and damage in arthritis , 2019, Nature.

[20]  J. Vilo,et al.  g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update) , 2019, Nucleic Acids Res..

[21]  Bonnie Berger,et al.  Efficient integration of heterogeneous single-cell transcriptomes using Scanorama , 2019, Nature Biotechnology.

[22]  Oscar Franzén,et al.  PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data , 2019, Database J. Biol. Databases Curation.

[23]  Fabian J Theis,et al.  PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells , 2019, Genome Biology.

[24]  K. Nishioka,et al.  Prostate transmembrane protein androgen induced 1 is induced by activation of osteoclasts and regulates bone resorption , 2019, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[25]  Andrew J. Hill,et al.  The single cell transcriptional landscape of mammalian organogenesis , 2019, Nature.

[26]  F. Petraglia,et al.  Activin A in Mammalian Physiology. , 2019, Physiological reviews.

[27]  Vincent A. Traag,et al.  From Louvain to Leiden: guaranteeing well-connected communities , 2018, Scientific Reports.

[28]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection , 2018, J. Open Source Softw..

[29]  T. Okinaga,et al.  Mechanisms involved in enhancement of osteoclast formation by activin‐A , 2018, Journal of cellular biochemistry.

[30]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[31]  岩本 依子,et al.  Intercellular communication between keratinocytes and fibroblasts induces local osteoclast differentiation : a mechanism underlying cholesteatoma-induced bone destruction , 2016 .

[32]  Y. Matsumoto,et al.  Neofunction of ACVR1 in fibrodysplasia ossificans progressiva , 2015, Proceedings of the National Academy of Sciences.

[33]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[34]  H. Sudhoff,et al.  Updates and Knowledge Gaps in Cholesteatoma Research , 2015, BioMed research international.

[35]  L. Suva,et al.  Activin A inhibits RANKL-mediated osteoclast formation, movement and function in murine bone marrow macrophage cultures , 2015, Journal of Cell Science.

[36]  Cristina Municio,et al.  Macrophages from the synovium of active rheumatoid arthritis exhibit an activin A‐dependent pro‐inflammatory profile , 2015, The Journal of pathology.

[37]  Z. Chi,et al.  Induction of cytokine production in cholesteatoma keratinocytes by extracellular high-mobility group box chromosomal protein 1 combined with DNA released by apoptotic cholesteatoma keratinocytes , 2015, Molecular and Cellular Biochemistry.

[38]  Z. Chi,et al.  Induction of cytokine production in cholesteatoma keratinocytes by extracellular high-mobility group box chromosomal protein 1 combined with DNA released by apoptotic cholesteatoma keratinocytes , 2014, Molecular and Cellular Biochemistry.

[39]  M. Capulli,et al.  Generation and culture of osteoclasts. , 2014, BoneKEy reports.

[40]  Masaru Ishii,et al.  Dynamic visualization of RANKL and Th17-mediated osteoclast function. , 2013, The Journal of clinical investigation.

[41]  Brandon A Mccutcheon,et al.  Surgical Technique and Recurrence in Cholesteatoma: A Meta-Analysis , 2013, Audiology and Neurotology.

[42]  Atsuko Fujioka,et al.  IL-1beta stimulates activin betaA mRNA expression in human skin fibroblasts through the MAPK pathways, the nuclear factor-kappaB pathway, and prostaglandin E2. , 2011, Endocrinology.

[43]  T. Pawełczyk,et al.  Expression of Tumor Necrosis Factor-α, Interleukin-1α, Interleukin-6 and Interleukin-10 in Chronic Otitis Media with Bone Osteolysis , 2011, ORL.

[44]  Omnia A. Mohammed,et al.  Value of serum and synovial fluid activin A and inhibin A in some rheumatic diseases , 2010, International journal of rheumatic diseases.

[45]  A. Mustafa,et al.  Complications of chronic otitis media with cholesteatoma during a 10-year period in Kosovo , 2008, European Archives of Oto-Rhino-Laryngology.

[46]  F. Schmidt Meta-Analysis , 2008 .

[47]  M. Péoc'h,et al.  Malleus head fixation: histopathology revisited , 2006, Acta oto-laryngologica.

[48]  K. Asano,et al.  Suppressive Activity of Vitamin D3 on Matrix Metalloproteinase Production From Cholesteatoma Keratinocytes In Vitro , 2005, Mediators of inflammation.

[49]  S. Werner,et al.  Activin: an important regulator of wound repair, fibrosis, and neuroprotection , 2004, Molecular and Cellular Endocrinology.

[50]  R. Chole,et al.  A Possible Role for Nitric Oxide in Osteoclastogenesis Associated With Cholesteatoma , 2004, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[51]  K. Hiromura,et al.  Activin A induces cell proliferation of fibroblast-like synoviocytes in rheumatoid arthritis. , 2003, Arthritis and rheumatism.

[52]  S. Teitelbaum,et al.  Genetic regulation of osteoclast development and function , 2003, Nature Reviews Genetics.

[53]  J. Clements,et al.  Characterization of a novel gene, STAG1/PMEPA1, upregulated in renal cell carcinoma and other solid tumors , 2001, Molecular carcinogenesis.

[54]  T. Nishihara,et al.  Possible involvement of protein kinases and Smad2 signaling pathways on osteoclast differentiation enhanced by activin A , 2001, Journal of cellular physiology.

[55]  A. Sher,et al.  Analysis of Fractalkine Receptor CX3CR1 Function by Targeted Deletion and Green Fluorescent Protein Reporter Gene Insertion , 2000, Molecular and Cellular Biology.

[56]  R. Balling,et al.  Overexpression of activin A in the skin of transgenic mice reveals new activities of activin in epidermal morphogenesis, dermal fibrosis and wound repair , 1999, The EMBO journal.

[57]  D. Proops,et al.  Production of parathyroid-hormone-related protein by cholesteatoma cells in culture , 1991, The Lancet.

[58]  M. Abramson,et al.  Pathogenic factors in bone resorption in cholesteatoma. , 1984, Acta oto-laryngologica.

[59]  R. Yuasa,et al.  Organic Acids and Anaerobic Microorganisms in the Contents of the Cholesteatoma SAC , 1983, The Annals of otology, rhinology, and laryngology.

[60]  OUP accepted manuscript , 2022, Nucleic Acids Research.

[61]  C. Mogoantă,et al.  Molecular biology of cholesteatoma. , 2014, Romanian journal of morphology and embryology = Revue roumaine de morphologie et embryologie.

[62]  T. Seki,et al.  An Immunohistochemical Study , 2006 .

[63]  Holger Sudhoff,et al.  Etiopathogenesis of cholesteatoma , 2004, European Archives of Oto-Rhino-Laryngology and Head & Neck.

[64]  R. Jilka,et al.  Inhibin suppresses and activin stimulates osteoblastogenesis and osteoclastogenesis in murine bone marrow cultures. , 2002, Endocrinology.