What’s wrong with pixels? Some recent developments interfacing remote sensing and GIS

While remote sensing made enormous progress over the last years in terms of improved resolution, data availability and public awareness, a vast majority of applications rely on basic image processing concepts developed in the 70s: per-pixel classification of in a multi-dimensional feature space. It is argued that this methodology does not make use of any spatial concepts. Especially in high-resolution images it is very likely that neighbouring pixels belong to the same land cover class as the pixel under consideration. The authors argue for classification of homogeneous groups of pixels reflecting our objects of interest in reality and use algorithms to delineate objects based on contextual information in an image on the basis of texture or fractal dimension. ZUSAMMENFASSUNG Was ist mit den Pixeln los? Neue Entwicklungen zur Integration von Fernerkundung und GIS. Fernerkundung hat sich in den vergangenen Jahren bezüglich Bildauflösung, Datenverfügbarkeit und öffentlicher Präsenz enorm weiterentwickelt, trotzdem basieren nahezu alle Anwendungen auf den methodischen Grundlagen der Bildverarbeitung aus den 70er Jahren: individuelle Pixel werden im mehrdimensionalen Spektralraum klassifiziert, ohne irgendwelche räumlichen Konzepte zu berücksichtigen. Insbesondere bei hochauflösenden Bildern gehören benachbarte Pixel mit hoher Wahrscheinlichkeit zur selben Kategorie wie das aktuelle Pixel. Die Autoren argumentieren für Klassifikationsansätze homogener Gruppen von Pixeln, die realweltlichen Objekten entsprechen und aus kontextueller Bildinformation (Textur, fraktale Dimension) abgeleitet werden. Dr. Thomas Blaschke 1 Patterns do matter, or: the need for change We start our considerations of recent remote sensing practice from the user’s point of view and, more precisely, from a geographical or landscape ecology point of view: The world in its complexity and manifold relationships cannot easily be grasped in full depth. Creating models of the world or computer-based representations of its surface poses a series of problems. In landscape ecology, there is a growing awareness about continuity of phenomena and discontinuities of scales. Forman (1995) described this ambiguity through the metaphor of a person gradually descending with a spaceship or balloon. Human perception abruptly starts to discover patterns and mosaics. Many mosaics are quasi-stable or persistent for a while, separated by rapid changes that represent the “domains of scale”. Each domain exhibits certain spatial patterns, which in turn are produced by a certain causal mechanism or group of processes. Back to remote sensing: The ultimate goal is to mirror, elucidate, quantify and to describe surface patterns in order to contribute to an understanding of the underlying phenomena and processes. Since the start of the first Landsat satellite in 1972, we achieve this in more or less the same way: We measure some reflectance at the Earth’s surface. The smallest unit is called a ‘pixel’. In this paper, we do not question the pixel as an important and necessary entity. Instead, we argue for a somewhat different handling of our entities introducing the concepts of neighbourhood, distance and location. All these concepts are not new. In fact, entire disciplines like Geography are based on these conINTERFACING REMOTE SENSING AND GIS

[1]  B. Kartikeyan,et al.  A segmentation approach to classification of remote sensing imagery , 1998 .

[2]  J. Wiens Population Responses to Patchy Environments , 1976 .

[3]  U. Ammer,et al.  OBJECT-BASED CLASSIFICATION AND APPLICATIONS IN THE ALPINE FOREST ENVIRONMENT , 1999 .

[4]  E. Ashton,et al.  Algorithms for the Detection of Su b-Pixel Targets in Multispectral Imagery , 1998 .

[5]  B. Turner,et al.  Performance of a neural network: mapping forests using GIS and remotely sensed data , 1997 .

[6]  J. Strobl,et al.  Object-Oriented Image Processing in an Integrated GIS/Remote Sensing Environment and Perspectives for Environmental Applications , 2000 .

[7]  Arno Schäpe,et al.  Multiresolution Segmentation : an optimization approach for high quality multi-scale image segmentation , 2000 .

[8]  Jian-guo Wu Hierarchy and scaling: Extrapolating informa-tion along a scaling ladder , 1999 .

[9]  N. B. Kotliar,et al.  Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity , 1990 .

[10]  S. Levin,et al.  The role of mosaic phenomena in natural communities. , 1977, Theoretical population biology.

[11]  Simon A. Levin,et al.  A Spatial Patch Dynamic Modeling Approach to Pattern and Process in an Annual Grassland , 1994 .

[12]  A. Karnieli,et al.  A review of mixture modeling techniques for sub‐pixel land cover estimation , 1996 .

[13]  L.L.F. Janssen,et al.  Methodology for updating terrain object data from remote sensing data : the application of Landsat TM data with respect to agricultural fields , 1994 .

[14]  J. Townshend,et al.  Beware of per-pixel characterization of land cover , 2000 .

[15]  Thomas R. Allen,et al.  Advances in remote sensing and GIS analysis , 2001 .

[16]  R. Forman Land Mosaics: The Ecology of Landscapes and Regions , 1995 .

[17]  B. Gorte Probabilistic segmentation of remotely sensed images , 1998 .

[18]  E. Baltsavias,et al.  Automatic Extraction of Man-Made Objects from Aerial and Space Images (II) , 1995 .

[19]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[20]  Dazhong Wen Land Mosaics: The Ecology of Landscapes and Regions , 1997 .

[21]  Ezzatollah Salari,et al.  Texture segmentation using hierarchical wavelet decomposition , 1995, Pattern Recognit..

[22]  Robert A. Schowengerdt,et al.  Remote sensing, models, and methods for image processing , 1997 .

[23]  Tao Cheng,et al.  A process-oriented data model for fuzzy spatial objects , 1999 .

[24]  H. Hoffmann,et al.  Spatial pattern recognition by means of representativeness measures , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[25]  Nanno Mulder,et al.  Likelihood-based image segmentation and classification: a framework for the integration of expert knowledge in image classification procedures , 2000 .

[26]  P. White,et al.  The Ecology of Natural Disturbance and Patch Dynamics , 1986 .

[27]  Edward J. Milton,et al.  Image Endmembers and the Scene Model , 1999 .

[28]  Aidong Zhang,et al.  A Multi-Resolution Content-Based Retrieval Approach for Geographic Images , 1999, GeoInformatica.

[29]  Arcot Sowmya,et al.  Modelling and representation issues in automated feature extraction from aerial and satellite images , 2000 .

[30]  Olof Henricsson,et al.  3-D building reconstruction with ARUBA , 1997 .