Numerical Simulation of the Impact of Water Vapour and Moisture Blockers in Energy Diagnostics of Ventilated Partitions

Current trends towards saving energy and designing sustainable buildings result in most designers focusing on achieving the best thermal parameters, thereby neglecting a careful moisture analysis. Excessive moisture content in building partitions degrades the mechanical properties of materials, reduces thermal insulation properties (which leads to an increase in the demand for thermal energy) and worsens the microclimate in rooms. Modern digital solutions help create appropriate models of partitions that work for many years in good environmental conditions. According to the analysis of air parameters, 1 m3 of air at 20 °C contains approx. 17.3 g of water. When the temperature of the air reaches the dew point temperature, water vapour condenses. The dew point depends on air temperature and relative air humidity; for instance, at the same air temperature of 20 °C, the dew point temperature at 40% relative air humidity is 6 °C, whereas at 90% relative humidity, it is over 18 °C. This means that the higher the value of relative humidity in the room at a certain temperature, the lower the temperature that will cause condensation. The article presents a numerical analysis of the insulation work of flexible materials within the layers of ventilated partitions in an 8-year simulated period of varying environmental conditions. The aim of the article is to analyze different models and variants of ventilated partition operation with respect to the advisability of using a vapour barrier to avoid the problem of destruction of thermal insulation and finishing layers of a ventilated roof.

[1]  W. Kostrzewski,et al.  Influence of Variable Moisture Conditions on the Value of the Thermal Conductivity of Selected Insulation Materials Used in Passive Buildings , 2022, Energies.

[2]  B. Ksit,et al.  Diagnostics and Renovation of Moisture Affected Historic Buildings , 2022, Civil and Environmental Engineering Reports.

[3]  Z. Walczak,et al.  Multi-criteria diagnostics of historic buildings with the use of 3D laser scanning (a case study) , 2023, Bulletin of the Polish Academy of Sciences Technical Sciences.

[4]  M. Muselli,et al.  A Study to Explore the Dew Condensation Potential of Cars , 2021, Atmosphere.

[5]  H. Künzel,et al.  Laboratory Measurement and Boundary Conditions for the Water Vapour Resistivity Properties of Typical Australian Impermeable and Smart Pliable Membranes , 2021, Buildings.

[6]  A. Tadeu,et al.  Unsteady Coupled Moisture and Heat Energy Transport through an Exterior Wall Covered with Vegetation , 2021, Energies.

[7]  W. Worek,et al.  Analytical Investigation of a Novel System for Combined Dew Point Cooling and Water Recovery , 2021, Applied Sciences.

[8]  Ireneusz Laks,et al.  Analysis of the Impact of Omitted Accidental Actions and the Method of Land Use on the Number of Construction Disasters (a Case Study of Poland) , 2021, Sustainability.

[9]  Ľ. Krišťák,et al.  Suitability of Wooden Shingles for Ventilated Roofs: An Evaluation of Ventilation Efficiency , 2020, Applied Sciences.

[10]  V. Singh,et al.  Kernel Extreme Learning Machine: An Efficient Model for Estimating Daily Dew Point Temperature Using Weather Data , 2020, Water.

[11]  B. Orlik-Kożdoń Microclimate Conditions in Rooms: Their Impact on Mold Development in Buildings , 2020, Energies.

[12]  E. Zender-Świercz Microclimate in Rooms Equipped with Decentralized Façade Ventilation Device , 2020, Atmosphere.

[13]  T. Kvande,et al.  Experimental Study of Thermal Buoyancy in the Cavity of Ventilated Roofs , 2020, Buildings.

[14]  B. Nowogońska Intensity of damage in the aging process of buildings , 2020 .

[15]  Anna Szymczak-Graczyk,et al.  Operational Problems in Structural Nodes of Reinforced Concrete Constructions , 2019, IOP Conference Series: Materials Science and Engineering.

[16]  B. Ksit,et al.  Rare Weather Phenomena and the Work of Large-Format Roof Coverings , 2019, Civil and Environmental Engineering Reports.

[17]  K. Patoka Zmiany w zasadach wentylowania dachów w wytycznych Związku Dekarzy Niemieckich , 2018 .

[18]  E. Swiercz Analysis of the impact of the parameters of outside air on the condition of indoor air , 2017 .

[19]  A. Moropoulou,et al.  Effect of temperature on water capillary rise coefficient of building materials , 2016 .

[20]  M. Telejko,et al.  Attempt to Improve Indoor Air Quality in Kindergartens , 2016 .

[21]  J. Weber Baudiagnose und Geräte , 2012 .

[22]  A. Charkowska Komfort cieplny w środowisku zimnym, termicznie umiarkowanym i gorącym , 2010 .

[23]  Ł. Adrian Klimatyzacja i wentylacja budynków użyteczności publicznej w aspekcie komfortu cieplnego , 2010 .

[24]  M. Podeszwa,et al.  Cele i zasady stosowania folii i membran dachowych , 2009 .

[25]  R. Geryło Powierzchniowa kondensacja pary wodnej - przegrody przeszklone , 2008 .

[26]  L. Macieik Zawilgocenia ściany mieszkania na skutek złej eksploatacji , 2008 .

[27]  K. Patoka,et al.  Wentylacja membran wstępnego krycia (MWK) , 2008 .

[28]  C. Weber,et al.  Membrany dachowe - kluczowe zagadnienia dotyczące starzenia i trwałości , 2008 .

[29]  K. Patoka Ocena właściwości membran wstępnego krycia , 2008 .

[30]  A. Chojnacka,et al.  Wybrane aspekty dotyczące komfortu termicznego w pomieszczeniach , 2007 .

[31]  K. Patoka Funkcje i podział folii wstępnego krycia , 2003 .

[32]  A. Lis,et al.  Wybrane problemy komfortu cieplnego osób w pomieszczeniach , 2002 .

[33]  M. Mijakowski Podstawy opisu zjawisk kształtujących wilgotność powietrza w pomieszczeniach , 2001 .

[34]  R. Geryło,et al.  Wybrane problemy numerycznej symulacji pól temperatury w Zakładzie Fizyki Cieplnej , 2000 .

[35]  K. Patoka Folie wstępnego krycia - niezbędny element nowoczesnego dachu spadzistego , 2000 .

[36]  R. Hees,et al.  Treatment of rising damp: a laboratory evaluation method , 1995 .

[37]  Fraunhofer-Institut für Bauphysik,et al.  Simultaneous heat and moisture transport in building components: One- and two-dimensional calculation using simple parameters , 1995 .

[38]  J. Pogorzelski Fizyka cieplna budowli , 1976 .

[39]  T. Young III. An essay on the cohesion of fluids , 1805, Philosophical Transactions of the Royal Society of London.