On perturbed orthogonal polynomials on the real line and the unit circle via Szegő's transformation

By using the Szegź's transformation we deduce new relations between the recurrence coefficients for orthogonal polynomials on the real line and the Verblunsky parameters of orthogonal polynomials on the unit circle. Moreover, we study the relation between the corresponding S -functions and C -functions.

[1]  V. M. Badkov Systems of orthogonal polynomials explicitly represented by the Jacobi polynomials , 1987 .

[2]  Xin Li,et al.  On sieved orthogonal polynomials. IX. Orthogonality on the unit circle. , 1992 .

[3]  Alexei Zhedanov,et al.  Rational spectral transformations and orthogonal polynomials , 1997 .

[4]  A. Ronveaux,et al.  Upward Extension of the Jacobi Matrix for Orthogonal Polynomials , 1995, math/9510213.

[5]  Barry Simon,et al.  Orthogonal polynomials on the unit circle. Part 1 , 2005 .

[6]  K. Castillo On perturbed Szegő recurrences , 2014 .

[7]  J. Petronilho,et al.  On orthogonal polynomials obtained via polynomial mappings , 2010, J. Approx. Theory.

[8]  J. Petronilho Orthogonal polynomials on the unit circle via a polynomial mapping on the real line , 2008 .

[9]  I︠a︡. L. Geronimus Polynomials orthogonal on a circle and their applications , 1954 .

[10]  K. Castillo,et al.  On co-polynomials on the real line , 2015 .

[11]  T. Chihara,et al.  An Introduction to Orthogonal Polynomials , 1979 .

[12]  Luis E. Garza-Castañón,et al.  Szegő transformations and rational spectral transformations for associated polynomials , 2009, J. Comput. Appl. Math..

[13]  F. Peherstorfer A special class of polynomials orthogonal on the unit circle including the associated polynomials , 1996 .

[14]  Luis E. Garza-Castañón,et al.  Szego transformations and Nth order associated polynomials on the unit circle , 2009, Comput. Math. Appl..

[15]  D. H. Griffel,et al.  An Introduction to Orthogonal Polynomials , 1979 .

[16]  G. Szegő Zeros of orthogonal polynomials , 1939 .

[17]  C. Jacobi Über die Reduction der quadratischen Formen auf die kleinste Anzahl Glieder. , 1850 .

[18]  Barry Simon,et al.  Orthogonal Polynomials on the Unit Circle , 2004, Encyclopedia of Special Functions: The Askey-Bateman Project.

[19]  Francisco Marcellán,et al.  Orthogonal polynomials on the unit circle: symmetrization and quadratic decomposition , 1991 .