Electronic Structure and Bulk Properties of β‐SiAlONs

A series of β-SiAlONs with the composition Si6–zAlzOzN8–z (z= 0.5–4) is prepared by hot isostatic pressing. Evaluated bulk moduli are compared with those calculated using the first-principles method. Theoretical values are derived from the fit of the energy versus volume dependence. In total-energy calculations full relaxation of all atomic positions within a supercell is performed. Both experimental and theoretical bulk moduli compare reasonably well and show the decrease in value from ∼240 GPa (z= 0) to ∼170 GPa (z= 4). For the O/N substitutions no preferential occupation of the lattice N sites is observed. Both Al/Si and O/N substitutions cause the local expansion of the structure. In the relaxed structures a sphere of decreased interatomic distances surrounds each substitution site, thus compensating for effect of the local expansion. The increasing Al–O/Si–N substitution rate causes a smooth change of the shape and position of the energy bands. The band gap between occupied and unoccupied states is getting narrower, thus decreasing the isolating properties of the material.

[1]  W. Ching,et al.  Electronic Structure and Bonding of -SiAlON , 2004 .

[2]  H. Kleebe,et al.  Structure and Viscosity of Grain Boundary in High‐Purity SiAlON Ceramics , 2004 .

[3]  S. Sakaguchi,et al.  Influence of Aluminum–Oxygen–Yttrium Solid Solution on the Aqueous Tribological Behavior of Silicon Nitride , 2004 .

[4]  J. Hafner,et al.  Adsorption of linear hydrocarbons in zeolites: A density-functional investigation , 2001 .

[5]  J. Hafner,et al.  Bro/nsted acid sites in gmelinite , 1999 .

[6]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[7]  L. Benco Crystal orbital scheme for Si3N4 , 1998 .

[8]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[9]  Ching,et al.  Electronic structure and optical properties of alpha and beta phases of silicon nitride, silicon oxynitride, and with comparison to silicon dioxide. , 1995, Physical review. B, Condensed matter.

[10]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[11]  Georg Kresse,et al.  Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements , 1994 .

[12]  N. Ramakrishnan,et al.  Effective Elastic Moduli of Porous Ceramic Materials , 1993 .

[13]  Hafner,et al.  Ab initio molecular dynamics for open-shell transition metals. , 1993, Physical review. B, Condensed matter.

[14]  J. Lis,et al.  Elastic Properties, Hardness and Indentation Fracture Toughness of β-SiAlONs , 1993 .

[15]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[16]  I. Tanaka,et al.  Electronic structure behind the mechanical properties of β-sialons , 1992 .

[17]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[18]  T. Ekström,et al.  β‐Sialon Ceramics Prepared at 1700°C by Hot Isostatic Pressing , 1989 .

[19]  R. O. Jones,et al.  The density functional formalism, its applications and prospects , 1989 .

[20]  M. Nygren,et al.  Dense single-phase β-sialon ceramics by glass-encapsulated hot isostatic pressing , 1989 .

[21]  M. Haviar,et al.  Unit-cell dimensions of. beta. prime -sialons , 1988 .

[22]  K. Phani,et al.  Elastic modulus-porosity relationship for Si3N4 , 1987 .

[23]  A. Takase,et al.  Raman spectroscopic study of β-sialons in the system Si3N4-Al2O3-AIN , 1984 .

[24]  Jorge López,et al.  Empirical Dependence of Elastic Moduli on Porosity for Ceramic Materials , 1983 .

[25]  R. Grün The crystal structure of β‐Si3N4: structural and stability considerations between α‐ and β‐Si3N4 , 1979 .

[26]  護 三友,et al.  Si-Al-O-Nセラミックス単相の合成 , 1978 .

[27]  F. Birch,et al.  Finite strain isotherm and velocities for single‐crystal and polycrystalline NaCl at high pressures and 300°K , 1978 .

[28]  L. Gauckler,et al.  Some Properties of β-Si6-x AlxOxN8-x , 1977 .

[29]  R. J. Lumby,et al.  The formation of single-phase Si-Al-O-N ceramics , 1977 .

[30]  K. Jack Sialons and related nitrogen ceramics , 1976 .