Recent advances in biosensing using magnetic glyconanoparticles

[1]  C. R. Becer,et al.  Glyconanoparticles and their interactions with lectins , 2015 .

[2]  Gun-Hee Kim,et al.  Probing cell-surface carbohydrate binding proteins with dual-modal glycan-conjugated nanoparticles. , 2015, Journal of the American Chemical Society.

[3]  Chun‐Cheng Lin,et al.  Advances in multifunctional glycosylated nanomaterials: preparation and applications in glycoscience. , 2015, Carbohydrate research.

[4]  John L. Wang,et al.  Identification of Lectins from Metastatic Cancer Cells through Magnetic Glyconanoparticles. , 2015, Israel journal of chemistry.

[5]  Richard D Cummings,et al.  Protein glycosylation in cancer. , 2015, Annual review of pathology.

[6]  Fernando Briones,et al.  Nanoparticle-mediated monitoring of carbohydrate-lectin interactions using Transient Magnetic Birefringence. , 2014, Analytical chemistry.

[7]  T. Rocha-Santos Sensors and biosensors based on magnetic nanoparticles , 2014 .

[8]  Olof Ramström,et al.  Glyconanomaterials: Emerging applications in biomedical research , 2014, Nano Research.

[9]  K. Bennett,et al.  MR imaging techniques for nano-pathophysiology and theranostics. , 2014, Advanced drug delivery reviews.

[10]  R. Pieters,et al.  Towards bacterial adhesion-based therapeutics and detection methods , 2014 .

[11]  D Issadore,et al.  Magnetic sensing technology for molecular analyses. , 2014, Lab on a chip.

[12]  C. Sangregorio,et al.  Iron oxide superparamagnetic nanoparticles conjugated with a conformationally blocked α-Tn antigen mimetic for macrophage activation. , 2014, Nanoscale.

[13]  C. Harms,et al.  Imaging early endothelial inflammation following stroke by core shell silica superparamagnetic glyconanoparticles that target selectin. , 2014, Nano letters.

[14]  David Issadore,et al.  Miniaturized nuclear magnetic resonance platform for detection and profiling of circulating tumor cells. , 2014, Lab on a chip.

[15]  H. Shokrollahi Contrast agents for MRI. , 2013, Materials science & engineering. C, Materials for biological applications.

[16]  I. García,et al.  Glyconanoparticles as Multifunctional and Multimodal Carbohydrate Systems , 2013 .

[17]  Mark B. Jones,et al.  The regulatory power of glycans and their binding partners in immunity. , 2013, Trends in immunology.

[18]  P. Seeberger,et al.  Magnetic porous sugar-functionalized PEG microgels for efficient isolation and removal of bacteria from solution. , 2013, Biomacromolecules.

[19]  David C. Zhu,et al.  Glyconanoparticle aided detection of β-amyloid by magnetic resonance imaging and attenuation of β-amyloid induced cytotoxicity. , 2013, ACS chemical neuroscience.

[20]  Mingdi Yan,et al.  Maltoheptaose promotes nanoparticle internalization by Escherichia coli. , 2013, Chemical communications.

[21]  A. Heise,et al.  Stable aqueous dispersions of glycopeptide-grafted selectably functionalized magnetic nanoparticles. , 2013, Angewandte Chemie.

[22]  M. Zou,et al.  Immunosensor based on magnetic relaxation switch and biotin-streptavidin system for the detection of Kanamycin in milk. , 2013, Biosensors & bioelectronics.

[23]  Po-Chiao Lin,et al.  A chemically functionalized magnetic nanoplatform for rapid and specific biomolecular recognition and separation. , 2013, Biomacromolecules.

[24]  L. Stievano,et al.  Sophorolipids-functionalized iron oxide nanoparticles. , 2013, Physical chemistry chemical physics : PCCP.

[25]  Xiaoming Sun,et al.  Detection and isolation of dendritic cells using Lewis X-functionalized magnetic nanoparticles. , 2012, Biomacromolecules.

[26]  M. Desco,et al.  Live Imaging of Mouse Endogenous Neural Progenitors Migrating in Response to an Induced Tumor , 2012, PloS one.

[27]  T. Rojo,et al.  Functionalized Fe3O4@Au superparamagnetic nanoparticles: in vitro bioactivity , 2012, Nanotechnology.

[28]  Taeghwan Hyeon,et al.  Designed Synthesis of Uniformly Sized Iron Oxide Nanoparticles for Efficient Magnetic Resonance Imaging Contrast Agents , 2012 .

[29]  Dong Yun Lee,et al.  Heparin-coated superparamagnetic iron oxide for in vivo MR imaging of human MSCs. , 2012, Biomaterials.

[30]  Lucía Gutiérrez,et al.  Biological applications of magnetic nanoparticles. , 2012, Chemical Society reviews.

[31]  Nuria Genicio,et al.  Uptake and Intracellular Fate of Fluorescent‐Magnetic Glyco‐nanoparticles , 2012, Advanced healthcare materials.

[32]  Hauke Kloust,et al.  Relaxivity optimization of a PEGylated iron-oxide-based negative magnetic resonance contrast agent for T₂-weighted spin-echo imaging. , 2012, ACS nano.

[33]  Valeria Grazú,et al.  Monosaccharides versus PEG-functionalized NPs: influence in the cellular uptake. , 2012, ACS nano.

[34]  I. García,et al.  Specific labelling of cell populations in blood with targeted immuno-fluorescent/magnetic glyconanoparticles. , 2011, Biomaterials.

[35]  Mrinmoy De,et al.  Hybrid magnetic nanostructures (MNS) for magnetic resonance imaging applications. , 2011, Advanced drug delivery reviews.

[36]  Forrest M Kievit,et al.  Surface engineering of iron oxide nanoparticles for targeted cancer therapy. , 2011, Accounts of chemical research.

[37]  A. Müller,et al.  Magnetic and fluorescent glycopolymer hybrid nanoparticles for intranuclear optical imaging. , 2011, Biomacromolecules.

[38]  C. Kumar,et al.  Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. , 2011, Advanced drug delivery reviews.

[39]  Matthew R J Carroll,et al.  The effect of polymer coatings on proton transverse relaxivities of aqueous suspensions of magnetic nanoparticles , 2011, Nanotechnology.

[40]  C. Innocenti,et al.  Water-dispersible sugar-coated iron oxide nanoparticles. An evaluation of their relaxometric and magnetic hyperthermia properties. , 2011, Journal of the American Chemical Society.

[41]  Kheireddine El-Boubbou,et al.  Glyco-nanomaterials: translating insights from the "sugar-code" to biomedical applications. , 2011, Current medicinal chemistry.

[42]  Vasiliki Demas,et al.  Magnetic resonance for in vitro medical diagnostics: superparamagnetic nanoparticle-based magnetic relaxation switches , 2011 .

[43]  I. García,et al.  Magnetic glyconanoparticles as a versatile platform for selective immunolabeling and imaging of cells. , 2011, Bioconjugate chemistry.

[44]  Song Zhang,et al.  Rational strategy of magnetic relaxation switches for glycoprotein sensing. , 2011, The Analyst.

[45]  Y. Chuang,et al.  Galactose Encapsulated Multifunctional Nanoparticle for HepG2 Cell Internalization , 2010 .

[46]  I. García,et al.  Water-soluble magnetic glyconanoparticles based on metal-doped ferrites coated with gold: Synthesis and characterization , 2010 .

[47]  David C. Zhu,et al.  Hyaluronic acid immobilized magnetic nanoparticles for active targeting and imaging of macrophages. , 2010, Bioconjugate chemistry.

[48]  Pilar López-Larrubia,et al.  Engineering biofunctional magnetic nanoparticles for biotechnological applications. , 2010, Nanoscale.

[49]  S. Iyer,et al.  Detection of carbohydrate binding proteins using magnetic relaxation switches. , 2010, Analytical chemistry.

[50]  G. Visser,et al.  Detection of pathogenic Streptococcus suis bacteria using magnetic glycoparticles. , 2010, Organic & biomolecular chemistry.

[51]  Leonor David,et al.  Alterations in glycosylation as biomarkers for cancer detection , 2010, Journal of Clinical Pathology.

[52]  Miqin Zhang,et al.  Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. , 2010, Advanced drug delivery reviews.

[53]  David C. Zhu,et al.  Magnetic glyco-nanoparticles: a tool to detect, differentiate, and unlock the glyco-codes of cancer via magnetic resonance imaging. , 2010, Journal of the American Chemical Society.

[54]  C. Turchi,et al.  A convenient method for synthesis of glyconanoparticles for colorimetric measuring carbohydrate-protein interactions. , 2009, Biochemical and biophysical research communications.

[55]  S. Santra,et al.  Role of nanoparticle valency in the nondestructive magnetic-relaxation-mediated detection and magnetic isolation of cells in complex media. , 2009, Journal of the American Chemical Society.

[56]  Chi‐Huey Wong,et al.  Iron oxide/gold core/shell nanoparticles for ultrasensitive detection of carbohydrate-protein interactions. , 2009, Analytical chemistry.

[57]  F. Cañada,et al.  Modulating glycosidase degradation and lectin recognition of gold glyconanoparticles. , 2009, Carbohydrate research.

[58]  A. Caneschi,et al.  Water-soluble rhamnose-coated Fe3O4 nanoparticles. , 2009, Organic letters.

[59]  S. Cerdán,et al.  Paramagnetic Gd-based gold glyconanoparticles as probes for MRI: tuning relaxivities with sugars. , 2009, Chemical communications.

[60]  P. Schurtenberger,et al.  Photoinitiated coupling of unmodified monosaccharides to iron oxide nanoparticles for sensing proteins and bacteria. , 2009, Bioconjugate chemistry.

[61]  B. G. Davis,et al.  Glycoprotein synthesis: an update. , 2009, Chemical Reviews.

[62]  K. Tomioka,et al.  Asymmetric construction of three contiguous stereogenic centers by conjugate addition-alkylation of lithium ester enolate. , 2009, Organic letters.

[63]  R. Narain,et al.  Synthesis and characterization of biocompatible magnetic glyconanoparticles , 2009 .

[64]  N. Sibson,et al.  Glyconanoparticles allow pre-symptomatic in vivo imaging of brain disease , 2009, Proceedings of the National Academy of Sciences.

[65]  S. Iyer,et al.  Biotinylated Bi‐ and Tetra‐antennary Glycoconjugates for Escherichia coli Detection , 2008, Chembiochem : a European journal of chemical biology.

[66]  J. M. de la Fuente,et al.  Cell Response to Magnetic Glyconanoparticles: Does the Carbohydrate Matter? , 2007, IEEE Transactions on NanoBioscience.

[67]  Cyndee Gruden,et al.  Magnetic glyco-nanoparticles: a unique tool for rapid pathogen detection, decontamination, and strain differentiation. , 2007, Journal of the American Chemical Society.

[68]  M. Hájek,et al.  D-mannose-modified iron oxide nanoparticles for stem cell labeling. , 2007, Bioconjugate chemistry.

[69]  Ralph Weissleder,et al.  Continuous analyte sensing with magnetic nanoswitches. , 2006, Small.

[70]  A. Hernando,et al.  Gold and gold-iron oxide magnetic glyconanoparticles: synthesis, characterization and magnetic properties. , 2006, The journal of physical chemistry. B.

[71]  J. M. de la Fuente,et al.  Glyconanoparticles: types, synthesis and applications in glycoscience, biomedicine and material science. , 2006, Biochimica et biophysica acta.

[72]  Kannan M. Krishnan,et al.  Nanomagnetism and spin electronics: materials, microstructure and novel properties , 2006 .

[73]  J. Dennis,et al.  Glycoprotein glycosylation and cancer progression. , 1999, Biochimica et biophysica acta.

[74]  E. Toone,et al.  Specificity of C-glycoside complexation by mannose/glucose specific lectins. , 1996, Biochemistry.

[75]  M. Desco,et al.  Detection of mouse endogenous type B astrocytes migrating towards brain lesions. , 2015, Stem cell research.

[76]  D. Haddleton,et al.  Magnetic nanoparticles with diblock glycopolymer shells give lectin concentration-dependent MRI signals and selective cell uptake , 2014 .

[77]  L. Cipolla,et al.  Carbohydrate-based bioactive compounds for medicinal chemistry applications. , 2011, Mini reviews in medicinal chemistry.

[78]  Po-Chiao Lin,et al.  Functionalized Glyconanoparticles for the Study of Glycobiology , 2011 .

[79]  Ralph Weissleder,et al.  Binding affinity and kinetic analysis of targeted small molecule-modified nanoparticles. , 2010, Bioconjugate chemistry.