A learning-guided multi-objective evolutionary algorithm for constrained portfolio optimization

Graphical abstractDisplay Omitted HighlightsA learning-guided multi-objective evolutionary algorithm for constrained portfolio optimization problem is proposed.Four practical constraints, cardinality, quantity, pre-assignment and round lot, are considered.Performance wise, the proposed algorithm is not only capable to deliver high-quality portfolios enriched by additional constraints but also able to efficiently solve a reasonable size of asset up to 1318. It significantly outperforms the existing state-of-the-art algorithms. Portfolio optimization involves the optimal assignment of limited capital to different available financial assets to achieve a reasonable trade-off between profit and risk objectives. In this paper, we studied the extended Markowitz's mean-variance portfolio optimization model. We considered the cardinality, quantity, pre-assignment and round lot constraints in the extended model. These four real-world constraints limit the number of assets in a portfolio, restrict the minimum and maximum proportions of assets held in the portfolio, require some specific assets to be included in the portfolio and require to invest the assets in units of a certain size respectively. An efficient learning-guided hybrid multi-objective evolutionary algorithm is proposed to solve the constrained portfolio optimization problem in the extended mean-variance framework. A learning-guided solution generation strategy is incorporated into the multi-objective optimization process to promote the efficient convergence by guiding the evolutionary search towards the promising regions of the search space. The proposed algorithm is compared against four existing state-of-the-art multi-objective evolutionary algorithms, namely Non-dominated Sorting Genetic Algorithm (NSGA-II), Strength Pareto Evolutionary Algorithm (SPEA-2), Pareto Envelope-based Selection Algorithm (PESA-II) and Pareto Archived Evolution Strategy (PAES). Computational results are reported for publicly available OR-library datasets from seven market indices involving up to 1318 assets. Experimental results on the constrained portfolio optimization problem demonstrate that the proposed algorithm significantly outperforms the four well-known multi-objective evolutionary algorithms with respect to the quality of obtained efficient frontier in the conducted experiments.

[1]  El-Ghazali Talbi,et al.  A Taxonomy of Hybrid Metaheuristics , 2002, J. Heuristics.

[2]  Konstantinos P. Anagnostopoulos,et al.  A portfolio optimization model with three objectives and discrete variables , 2010, Comput. Oper. Res..

[3]  Dietmar Maringer,et al.  Portfolio management with heuristic optimization , 2005 .

[4]  A. Roli,et al.  Hybrid metaheuristics for constrained portfolio selection problems , 2011 .

[5]  Le Thi Hoai An,et al.  Robust investment strategies with discrete asset choice constraints using DC programming , 2010, Optimization.

[6]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[7]  Kalyanmoy Deb,et al.  Portfolio optimization with an envelope-based multi-objective evolutionary algorithm , 2009, Eur. J. Oper. Res..

[8]  Keshav Dahal,et al.  A survey on portfolio optimisation with metaheuristics. , 2006 .

[9]  Kay Chen Tan,et al.  Evolutionary multi-objective portfolio optimization in practical context , 2008, Int. J. Autom. Comput..

[10]  Majid Vafaei Jahan,et al.  Extremal optimization vs. learning automata: Strategies for spin selection in portfolio selection problems , 2012, Appl. Soft Comput..

[11]  Chang-Chun Lin,et al.  Genetic algorithms for portfolio selection problems with minimum transaction lots , 2008, Eur. J. Oper. Res..

[12]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[13]  Carlos A. Coello Coello,et al.  Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and epsilon-Dominance , 2005, EMO.

[14]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[15]  Carlos A. Coello Coello,et al.  Applications of multi-objective evolutionary algorithms in economics and finance: A survey , 2007, 2007 IEEE Congress on Evolutionary Computation.

[16]  Shucheng Liu,et al.  Lagrangian relaxation procedure for cardinality-constrained portfolio optimization , 2008, Optim. Methods Softw..

[17]  Dimitris Bertsimas,et al.  Algorithm for cardinality-constrained quadratic optimization , 2009, Comput. Optim. Appl..

[18]  Yazid M. Sharaiha,et al.  Heuristics for cardinality constrained portfolio optimisation , 2000, Comput. Oper. Res..

[19]  Andreas Zell,et al.  Evaluating a hybrid encoding and three crossover operators on the constrained portfolio selection problem , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[20]  Konstantinos P. Anagnostopoulos,et al.  The mean-variance cardinality constrained portfolio optimization problem: An experimental evaluation of five multiobjective evolutionary algorithms , 2011, Expert Syst. Appl..

[21]  Eric D. Smith,et al.  Ameliorating mental mistakes in tradeoff studies , 2007, Syst. Eng..

[22]  Keshav P. Dahal,et al.  Portfolio optimization using multi-obj ective genetic algorithms , 2007, 2007 IEEE Congress on Evolutionary Computation.

[23]  Andreas Zell,et al.  Evolutionary Algorithms and the Cardinality Constrained Portfolio Optimization Problem , 2004 .

[24]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[25]  F. Glover,et al.  Handbook of Metaheuristics , 2019, International Series in Operations Research & Management Science.

[26]  H. Markowitz Portfolio Selection: Efficient Diversification of Investments , 1971 .

[27]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[28]  Jong-Shi Pang,et al.  A New and Efficient Algorithm for a Class of Portfolio Selection Problems , 1980, Oper. Res..

[29]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[30]  Carlos Artemio Coello-Coello,et al.  Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art , 2002 .

[31]  Günther R. Raidl,et al.  A Unified View on Hybrid Metaheuristics , 2006, Hybrid Metaheuristics.

[32]  R. H. Myers,et al.  Probability and Statistics for Engineers and Scientists , 1978 .

[33]  José Antonio Lozano,et al.  A multiobjective approach to the portfolio optimization problem , 2005, 2005 IEEE Congress on Evolutionary Computation.

[34]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[35]  Luís N. Vicente,et al.  Efficient Cardinality/Mean-Variance Portfolios , 2013, System Modelling and Optimization.

[36]  Duan Li,et al.  OPTIMAL LOT SOLUTION TO CARDINALITY CONSTRAINED MEAN–VARIANCE FORMULATION FOR PORTFOLIO SELECTION , 2006 .

[37]  Jonathan E. Fieldsend,et al.  Cardinality Constrained Portfolio Optimisation , 2004, IDEAL.

[38]  Laura Diosan,et al.  A multi-objective evolutionary approach to the portfolio optimization problem , 2005, International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06).

[39]  John E. Beasley,et al.  Mixed-integer programming approaches for index tracking and enhanced indexation , 2009, Eur. J. Oper. Res..

[40]  Jürgen Branke,et al.  Efficient implementation of an active set algorithm for large-scale portfolio selection , 2008, Comput. Oper. Res..

[41]  A. Roli,et al.  Metaheuristics for the Portfolio Selection Problem , 2008 .

[42]  Martin J. Oates,et al.  PESA-II: region-based selection in evolutionary multiobjective optimization , 2001 .

[43]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[44]  Tunchan Cura,et al.  Particle swarm optimization approach to portfolio optimization , 2009 .

[45]  Bogdan Filipic,et al.  DEMO: Differential Evolution for Multiobjective Optimization , 2005, EMO.

[46]  Rong Qu,et al.  A hybrid algorithm for constrained portfolio selection problems , 2013, Applied Intelligence.

[47]  A. Terry Bahill,et al.  Ameliorating mental mistakes in tradeoff studies , 2007 .

[48]  Yue Qi,et al.  Large-scale MV efficient frontier computation via a procedure of parametric quadratic programming , 2010, Eur. J. Oper. Res..

[49]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[50]  Antonin Ponsich,et al.  A Survey on Multiobjective Evolutionary Algorithms for the Solution of the Portfolio Optimization Problem and Other Finance and Economics Applications , 2013, IEEE Transactions on Evolutionary Computation.

[51]  Chih-Chung Lo,et al.  Markowitz-based portfolio selection with cardinality constraints using improved particle swarm optimization , 2012, Expert Syst. Appl..

[52]  Günther R. Raidi A unified view on hybrid metaheuristics , 2006 .

[53]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[54]  Michel Gendreau,et al.  Handbook of Metaheuristics , 2010 .

[55]  S.K. Mishra,et al.  Portfolio management assessment by four multiobjective optimization algorithm , 2011, 2011 IEEE Recent Advances in Intelligent Computational Systems.

[56]  Maria Grazia Speranza,et al.  Heuristic algorithms for the portfolio selection problem with minimum transaction lots , 1999, Eur. J. Oper. Res..

[57]  Kalyanmoy Deb,et al.  Multi-objective Optimization , 2014 .

[58]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[59]  Daniel Bienstock,et al.  Computational study of a family of mixed-integer quadratic programming problems , 1995, Math. Program..

[60]  Sandra Paterlini,et al.  Multiobjective optimization using differential evolution for real-world portfolio optimization , 2011, Comput. Manag. Sci..

[61]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[62]  John E. Beasley,et al.  OR-Library: Distributing Test Problems by Electronic Mail , 1990 .

[63]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.