Supramolecular Hydrogels for Biomedical Applications.

upramolecular hydrogels are designed, synthesized and characterized with the goal to control cell and tissue interactions. These hydrogels are applied for various biomedical applications, Matrices are developed for the culturing of cells, and hydrogel systems are used as drug delivery vehicles

[1]  A. Spiering,et al.  Quantifying Guest-Host Dynamics in Supramolecular Assemblies to Analyze Their Robustness. , 2018, Macromolecular bioscience.

[2]  P. Ma,et al.  Self-Healing Supramolecular Hydrogels for Tissue Engineering Applications. , 2018, Macromolecular bioscience.

[3]  H. V. von Recum,et al.  Molecular Imprinting of Cyclodextrin Supramolecular Hydrogels Improves Drug Loading and Delivery. , 2018, Macromolecular bioscience.

[4]  Eric A. Appel,et al.  Non-Newtonian Polymer-Nanoparticle Hydrogels Enhance Cell Viability during Injection. , 2018, Macromolecular bioscience.

[5]  J. Collier,et al.  Self-Assembling Peptide Gels for 3D Prostate Cancer Spheroid Culture. , 2018, Macromolecular bioscience.

[6]  M. Webber,et al.  Dynamic Hydrogels from Host-Guest Supramolecular Interactions. , 2018, Macromolecular bioscience.

[7]  S. Varghese,et al.  Stimuli-Responsive Supramolecular Hydrogels and Their Applications in Regenerative Medicine. , 2018, Macromolecular bioscience.

[8]  J. Burdick,et al.  Injectable Supramolecular Hydrogel/Microgel Composites for Therapeutic Delivery. , 2018, Macromolecular bioscience.

[9]  Elham Radvar,et al.  Supramolecular Peptide/Polymer Hybrid Hydrogels for Biomedical Applications. , 2018, Macromolecular bioscience.

[10]  R. Sijbesma,et al.  Carbon Nanotube Reinforced Supramolecular Hydrogels for Bioapplications. , 2018, Macromolecular bioscience.

[11]  L. Dobrzański Biomaterials in Regenerative Medicine , 2018 .

[12]  M. Webber,et al.  Injectable network biomaterials via molecular or colloidal self‐assembly☆ , 2017, Advanced drug delivery reviews.

[13]  Robert Langer,et al.  Drug delivery by supramolecular design. , 2017, Chemical Society reviews.

[14]  C. Bouten,et al.  From molecular design to 3D printed life-like materials with unprecedented properties , 2017 .

[15]  M. Webber Engineering responsive supramolecular biomaterials: Toward smart therapeutics , 2016, Bioengineering & translational medicine.

[16]  Jie Zhou,et al.  Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials , 2015, Chemical reviews.

[17]  R. Naik,et al.  Biopolymers and supramolecular polymers as biomaterials for biomedical applications , 2015, MRS bulletin.

[18]  O. Scherman,et al.  Supramolecular polymeric hydrogels. , 2012, Chemical Society reviews.

[19]  E. W. Meijer,et al.  Functional Supramolecular Polymers , 2012, Science.

[20]  John B. Matson,et al.  Peptide Self-Assembly for Crafting Functional Biological Materials. , 2011, Current opinion in solid state & materials science.

[21]  E. W. Meijer,et al.  Supramolecular Biomaterials. A Modular Approach towards Tissue Engineering , 2007 .

[22]  L. Schmidt‐Mende,et al.  ZnO - nanostructures, defects, and devices , 2007 .

[23]  Rein V. Ulijn,et al.  Peptide-based stimuli-responsive biomaterials. , 2006, Soft matter.

[24]  M. Guler,et al.  Dentin Phosphoprotein Mimetic Peptide Nanofibers Promote Biomineralization. , 2019, Macromolecular bioscience.

[25]  Robert Langer,et al.  Supramolecular biomaterials. , 2016, Nature materials.

[26]  Honggang Cui,et al.  Self‐assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials , 2010, Biopolymers.