Machine learning for autonomous crystal structure identification.

We present a machine learning technique to discover and distinguish relevant ordered structures from molecular simulation snapshots or particle tracking data. Unlike other popular methods for structural identification, our technique requires no a priori description of the target structures. Instead, we use nonlinear manifold learning to infer structural relationships between particles according to the topology of their local environment. This graph-based approach yields unbiased structural information which allows us to quantify the crystalline character of particles near defects, grain boundaries, and interfaces. We demonstrate the method by classifying particles in a simulation of colloidal crystallization, and show that our method identifies structural features that are missed by standard techniques.

[1]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[2]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[3]  Sharon C. Glotzer,et al.  Efficient neighbor list calculation for molecular simulation of colloidal systems using graphics processing units , 2016, Comput. Phys. Commun..

[4]  W. Zhou,et al.  Metal-Organic Frameworks as Platforms for Functional Materials. , 2016, Accounts of chemical research.

[5]  M. Engel,et al.  Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. , 2016, Chemical reviews.

[6]  J. H. He,et al.  Nanoscale phase separation and local icosahedral order in amorphous alloys of immiscible elements , 2001 .

[7]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[8]  S. Klein,et al.  Overview: Experimental studies of crystal nucleation: Metals and colloids. , 2016, The Journal of chemical physics.

[9]  Posada-Amarillas,et al.  Microstructural analysis of simulated liquid and amorphous Ni. , 1996, Physical review. B, Condensed matter.

[10]  Andrew L. Ferguson,et al.  Nonlinear reconstruction of single-molecule free-energy surfaces from univariate time series. , 2016, Physical review. E.

[11]  Ting Xu,et al.  Self-assembly and applications of anisotropic nanomaterials: A review , 2015 .

[12]  L. V. Woodcock Entropy difference between the face-centred cubic and hexagonal close-packed crystal structures , 1997, Nature.

[13]  Gary S Grest,et al.  Effective potentials between nanoparticles in suspension. , 2011, The Journal of chemical physics.

[14]  Hannes Jónsson,et al.  Systematic analysis of local atomic structure combined with 3D computer graphics , 1994 .

[15]  R. Taylor,et al.  The Numerical Treatment of Integral Equations , 1978 .

[16]  Andrew W. Long,et al.  Machine learning assembly landscapes from particle tracking data. , 2015, Soft matter.

[17]  P. Steinhardt,et al.  Bond-orientational order in liquids and glasses , 1983 .

[18]  G. Grest,et al.  Structure and diffusion of nanoparticle monolayers floating at liquid/vapor interfaces: a molecular dynamics study. , 2012, The Journal of chemical physics.

[19]  Ian W. Hamley,et al.  Introduction to soft matter: synthetic and biological self-assembling materials. Revised edition , 2007 .

[20]  Andrew L. Ferguson,et al.  Nonlinear machine learning of patchy colloid self-assembly pathways and mechanisms. , 2014, The journal of physical chemistry. B.

[21]  Andrew L. Ferguson,et al.  Systematic determination of order parameters for chain dynamics using diffusion maps , 2010, Proceedings of the National Academy of Sciences.

[22]  A. Stukowski Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool , 2009 .

[23]  P. Leiderer,et al.  GRAIN SIZE CONTROL IN POLYCRYSTALLINE COLLOIDAL SOLIDS , 1995 .

[24]  R. Zwanzig Nonequilibrium statistical mechanics , 2001, Physics Subject Headings (PhySH).

[25]  Nicolas Le Roux,et al.  Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering , 2003, NIPS.

[26]  H. C. Andersen,et al.  Molecular dynamics study of melting and freezing of small Lennard-Jones clusters , 1987 .

[27]  Andrew L. Ferguson,et al.  Mesoscale Simulation and Machine Learning of Asphaltene Aggregation Phase Behavior and Molecular Assembly Landscapes. , 2017, The journal of physical chemistry. B.

[28]  Ronald R. Coifman,et al.  Diffusion Maps, Reduction Coordinates, and Low Dimensional Representation of Stochastic Systems , 2008, Multiscale Model. Simul..

[29]  Joshua A. Anderson,et al.  General purpose molecular dynamics simulations fully implemented on graphics processing units , 2008, J. Comput. Phys..

[30]  Timothy D. Sauer,et al.  Time-Scale Separation from Diffusion-Mapped Delay Coordinates , 2013, SIAM J. Appl. Dyn. Syst..

[31]  B. Jiang Head/Tail Breaks: A New Classification Scheme for Data with a Heavy-Tailed Distribution , 2012, 1209.2801.

[32]  Christoph Dellago,et al.  Accurate determination of crystal structures based on averaged local bond order parameters. , 2008, The Journal of chemical physics.

[33]  Andrew L. Ferguson,et al.  Nonlinear machine learning and design of reconfigurable digital colloids. , 2016, Soft matter.

[34]  P. Pusey,et al.  Phase behaviour of concentrated suspensions of nearly hard colloidal spheres , 1986, Nature.

[35]  S. Schmidt,et al.  Robust structural identification via polyhedral template matching , 2016, 1603.05143.

[36]  Y. Dodge on Statistical data analysis based on the L1-norm and related methods , 1987 .

[37]  G. Pharr,et al.  Atomistic processes of dislocation generation and plastic deformation during nanoindentation , 2011 .

[38]  Pak Lui,et al.  Strong scaling of general-purpose molecular dynamics simulations on GPUs , 2014, Comput. Phys. Commun..

[39]  Aaron R Dinner,et al.  Automatic method for identifying reaction coordinates in complex systems. , 2005, The journal of physical chemistry. B.

[40]  Jianhua Xing,et al.  Application of the projection operator formalism to non-hamiltonian dynamics. , 2009, The Journal of chemical physics.

[41]  Ioannis G. Kevrekidis,et al.  Nonlinear dimensionality reduction in molecular simulation: The diffusion map approach , 2011 .

[42]  Ioannis G Kevrekidis,et al.  Integrating diffusion maps with umbrella sampling: application to alanine dipeptide. , 2011, The Journal of chemical physics.

[43]  A. Stukowski Structure identification methods for atomistic simulations of crystalline materials , 2012, 1202.5005.

[44]  Rachael A Mansbach,et al.  Machine learning of single molecule free energy surfaces and the impact of chemistry and environment upon structure and dynamics. , 2015, The Journal of chemical physics.

[45]  I. Kevrekidis,et al.  Coarse-graining the dynamics of a driven interface in the presence of mobile impurities: effective description via diffusion maps. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  B. Trout,et al.  Obtaining reaction coordinates by likelihood maximization. , 2006, The Journal of chemical physics.

[47]  R Everaers,et al.  Interaction potentials for soft and hard ellipsoids. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[49]  Bonnie Berger,et al.  Global alignment of multiple protein interaction networks with application to functional orthology detection , 2008, Proceedings of the National Academy of Sciences.

[50]  Gunnar W. Klau,et al.  A new graph-based method for pairwise global network alignment , 2009, BMC Bioinformatics.

[51]  G. Grest,et al.  Molecular dynamics simulations of evaporation-induced nanoparticle assembly. , 2013, The Journal of chemical physics.

[52]  Graeme Ackland,et al.  Applications of local crystal structure measures in experiment and simulation , 2006 .

[53]  A. Stein,et al.  Design and functionality of colloidal-crystal-templated materials--chemical applications of inverse opals. , 2013, Chemical Society reviews.

[54]  G. Grest,et al.  Evaporation of Lennard-Jones fluids. , 2011, The Journal of chemical physics.

[55]  Andrew L. Ferguson,et al.  An experimental and computational investigation of spontaneous lasso formation in microcin J25. , 2010, Biophysical journal.

[56]  F. Sansoz,et al.  Enabling ultrahigh plastic flow and work hardening in twinned gold nanowires. , 2009, Nano letters.

[57]  D. Defays,et al.  An Efficient Algorithm for a Complete Link Method , 1977, Comput. J..