Computing Constrained Cramér-Rao Bounds
暂无分享,去创建一个
[1] Donald F. Towsley,et al. A resource-minimalist flow size histogram estimator , 2008, IMC '08.
[2] B. C. Ng,et al. On the Cramer-Rao bound under parametric constraints , 1998, IEEE Signal Processing Letters.
[3] A. Hero,et al. A recursive algorithm for computing Cramer-Rao- type bounds on estimator covariance , 1994, IEEE Trans. Inf. Theory.
[4] Amir Beck,et al. Quadratic Matrix Programming , 2006, SIAM J. Optim..
[5] D. Hunter,et al. A Tutorial on MM Algorithms , 2004 .
[6] Steven Kay,et al. Fundamentals Of Statistical Signal Processing , 2001 .
[7] G. M. Ostrovsky,et al. Linearly constrained optimization , 1989, Computing.
[8] L. Brown,et al. Nonexistence of Informative Unbiased Estimators in Singular Problems , 1993 .
[9] S. Kay. Fundamentals of statistical signal processing: estimation theory , 1993 .
[10] Alfred O. Hero,et al. Lower bounds for parametric estimation with constraints , 1990, IEEE Trans. Inf. Theory.
[11] Christoph F. Mecklenbräuker,et al. Multidimensional Rank Reduction Estimator for Parametric MIMO Channel Models , 2004, EURASIP J. Adv. Signal Process..
[12] W. Press,et al. Numerical Recipes: The Art of Scientific Computing , 1987 .
[13] David S. Watkins,et al. Fundamentals of matrix computations , 1991 .
[14] Abhishek Kumar,et al. Data streaming algorithms for efficient and accurate estimation of flow size distribution , 2004, SIGMETRICS '04/Performance '04.
[15] O. Strand. Theory and methods related to the singular-function expansion and Landweber's iteration for integral equations of the first kind , 1974 .
[16] Nikos D. Sidiropoulos,et al. Cramer-Rao lower bounds for low-rank decomposition of multidimensional arrays , 2001, IEEE Trans. Signal Process..
[17] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[18] David S. Watkins,et al. Fundamentals of Matrix Computations: Watkins/Fundamentals of Matrix Computations , 2005 .
[19] Alfred O. Hero,et al. Recursive algorithms for computing the Cramer-Rao bound , 1997, IEEE Trans. Signal Process..
[20] D. Harville. Matrix Algebra From a Statistician's Perspective , 1998 .
[21] Darryl Veitch,et al. Fisher Information in Flow Size Distribution Estimation , 2011, IEEE Transactions on Information Theory.
[22] R. Boyer. Decoupled root-MUSIC algorithm for Multidimensional Harmonic retrieval , 2008, 2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications.
[23] Darryl Veitch,et al. Sampling vs sketching: An information theoretic comparison , 2011, 2011 Proceedings IEEE INFOCOM.
[24] Alfred O. Hero,et al. Exploring estimator bias-variance tradeoffs using the uniform CR bound , 1996, IEEE Trans. Signal Process..
[25] Thomas L. Marzetta,et al. Parameter estimation problems with singular information matrices , 2001, IEEE Trans. Signal Process..
[26] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.