A full-step interior-point algorithm for second-order cone optimization based on a simple locally kernel function

In this paper, we investigate the properties of a simple locally kernel function. As an application, we present a full-step interior-point algorithm for second-order cone optimization (SOCO). The algorithm uses the simple locally kernel function to determine the search direction and define the neighbourhood of central path. The full step used in the algorithm has local quadratic convergence property according to the proximity function which is constructed by the simple locally kernel function. We derive the iteration complexity for the algorithm and obtain the best-known iteration bound for SOCO.

[1]  Donald Goldfarb,et al.  Second-order cone programming , 2003, Math. Program..

[2]  L. Faybusovich Linear systems in Jordan algebras and primal-dual interior-point algorithms , 1997 .

[3]  B. Yanqin,et al.  A full-Newton step infeasible interior-point algorithm for monotone LCP based on a locally-kernel function , 2012 .

[4]  G. Gu Full-step interior-point methods for symmetric optimization , 2009 .

[5]  Michael J. Todd,et al.  Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..

[6]  R. C. Monteiro,et al.  Interior path following primal-dual algorithms , 1988 .

[7]  Guoyong Gu,et al.  A Full Nesterov–Todd Step Infeasible Interior-Point Method for Second-Order Cone Optimization , 2013, Journal of Optimization Theory and Applications.

[8]  Jiming Peng,et al.  Self-regularity - a new paradigm for primal-dual interior-point algorithms , 2002, Princeton series in applied mathematics.

[9]  Manuel V. C. Vieira,et al.  Jordan algebraic approach to symmetric optimization , 2007 .

[10]  C. Roos,et al.  Full Nesterov-Todd Step Primal-Dual Interior-Point Methods for Second-Order Cone Optimization ∗ , 2008 .

[11]  L. Faybusovich A Jordan-algebraic approach to potential-reduction algorithms , 2002 .

[12]  Yanqin Bai,et al.  Primal-dual Interior-point Algorithms for Second-order Cone Optimization Based on a New Parametric Kernel Function , 2007 .

[13]  Kees Roos,et al.  A primal‐dual interior-point method for linear optimization based on a new proximity function , 2002, Optim. Methods Softw..

[14]  Katya Scheinberg,et al.  Extension of Karmarkar's algorithm onto convex quadratically constrained quadratic problems , 1996, Math. Program..

[15]  N. Megiddo Pathways to the optimal set in linear programming , 1989 .

[16]  Kunio Tanabe,et al.  Centered newton method for mathematical programming , 1988 .

[17]  Farid Alizadeh,et al.  Associative and Jordan Algebras, and Polynomial Time Interior-Point Algorithms for Symmetric Cones , 2001, Math. Oper. Res..

[18]  Lisa Turner,et al.  Applications of Second Order Cone Programming , 2012 .

[19]  Renato D. C. Monteiro,et al.  Interior path following primal-dual algorithms. part I: Linear programming , 1989, Math. Program..

[20]  M. Kojima,et al.  A primal-dual interior point algorithm for linear programming , 1988 .

[21]  Kees Roos,et al.  A Comparative Study of Kernel Functions for Primal-Dual Interior-Point Algorithms in Linear Optimization , 2004, SIAM J. Optim..

[22]  Yanqin Bai,et al.  A full-Newton step infeasible interior-point algorithm for monotone LCP based on a locally-kernel function , 2012, Numerical Algorithms.

[23]  Roy E. Marsten,et al.  The interior-point method for linear programming , 1992, IEEE Software.

[24]  C. Roos,et al.  A New and Efficient Large-Update Interior-Point Method for Linear Optimization , 2001 .

[25]  G. He,et al.  A globally convergent non-interior point algorithm with full Newton step for second-order cone programming , 2009 .

[26]  T. Tsuchiya A Polynomial Primal-Dual Path-Following Algorithm for Second-order Cone Programming , 1997 .

[27]  Jiming Peng,et al.  Self-regular functions and new search directions for linear and semidefinite optimization , 2002, Math. Program..

[28]  Shinji Mizuno,et al.  An O(√nL)-Iteration Homogeneous and Self-Dual Linear Programming Algorithm , 1994, Math. Oper. Res..

[29]  Takashi Tsuchiya,et al.  Polynomial convergence of primal-dual algorithms for the second-order cone program based on the MZ-family of directions , 2000, Math. Program..

[30]  Jiming Peng,et al.  New Complexity Analysis of the Primal—Dual Newton Method for Linear Optimization , 2000, Ann. Oper. Res..

[31]  Cornelis Roos,et al.  Primal–dual interior-point algorithms for second-order cone optimization based on kernel functions , 2009 .

[32]  J. Sturm Similarity and other spectral relations for symmetric cones , 2000 .

[33]  Kees Roos,et al.  A New Efficient Large-Update Primal-Dual Interior-Point Method Based on a Finite Barrier , 2002, SIAM J. Optim..

[34]  Farid Alizadeh,et al.  Extension of primal-dual interior point algorithms to symmetric cones , 2003, Math. Program..

[35]  Yongdo Lim,et al.  Geometric means on symmetric cones , 2000 .

[36]  Lipu Zhang,et al.  A new infeasible interior-point algorithm with full step for linear optimization based on a simple function , 2011, Int. J. Comput. Math..

[37]  M. El Ghami,et al.  New Primal-dual Interior-point Methods Based on Kernel Functions , 2005 .