Global asymptotic solutions of the wave equation

The coherent-state transform is used in obtaining a global, uniform asymptotic solution of the wave equation. This solution approximates high-frequency propagation of acoustic, optical, and seismic waves in generally heterogeneous media. The coherent-state approximation has an advantage over more traditional methods, because it leads to a well-defined approximation independent of the complexity of the caustics. As illustrations, homogeneous media, focusing and edge diffraction are discussed. The homogeneous and waveguide solutions reduce to the exact solution; and the diffracted wave has the correct asymptotic form but the accuracy depends on a parameter. Numerical calculations demonstrate how the accuracy is influenced by variations of this parameter

[1]  L. Frazer,et al.  The theory of finite frequency body wave synthetic seismograms in inhomogeneous elastic media , 1980 .

[2]  Terry L. Foreman An exact ray theoretical formulation of the Helmholtz equation , 1989 .

[3]  P. Schultz,et al.  Fundamentals of geophysical data processing , 1979 .

[4]  M. M. Popov,et al.  Computation of wave fields in inhomogeneous media — Gaussian beam approach , 1982 .

[5]  Ari Ben-Menahem,et al.  Range of validity of seismic ray and beam methods in general inhomogeneous media - I. General theory , 1985 .

[6]  A. Grossmann,et al.  Cycle-octave and related transforms in seismic signal analysis , 1984 .

[7]  C. H. Chapman,et al.  An introduction to Maslov's asymptotic method , 1985 .

[8]  Fred D. Tappert,et al.  The parabolic approximation method , 1977 .

[9]  Dennis Gabor,et al.  Theory of communication , 1946 .

[10]  J. Crank Tables of Integrals , 1962 .

[11]  Paul G. Richards,et al.  Quantitative Seismology: Theory and Methods , 1980 .

[12]  Ingrid Daubechies,et al.  Time-frequency localization operators: A geometric phase space approach , 1988, IEEE Trans. Inf. Theory.

[13]  Klauder Semiclassical quantization of classically chaotic systems. , 1987, Physical review letters.

[14]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[15]  L. Felsen,et al.  Radiation and scattering of waves , 1972 .

[16]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.

[17]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[18]  Frederick D. Tappert,et al.  Classical chaos in nonseparable wave propagation problems , 1988 .

[19]  Benjamin S. White,et al.  Some remarks on the Gaussian beam summation method , 1987 .

[20]  J. W. Humberston Classical mechanics , 1980, Nature.

[21]  J. Klauder Global, uniform, asymptotic wave-equation solutions for large wavenumbers , 1987 .

[22]  R. L. Holford Elementary source‐type solutions of the reduced wave equation , 1981 .

[23]  M. Kline,et al.  Electromagnetic theory and geometrical optics , 1965 .

[24]  Chris Chapman,et al.  Ray theory and its extensions; WKBJ and Maslov seismograms , 1985 .