Robust window operators

It is a common practice in computer vision and image processing to convolve rectangular constant coefficient windows with digital images to perform local smoothing and derivative estimation for edge detection and other purposes. If all data points in each image window belong to the same statistical population, this practice is reasonable and fast. But, as is well known, constant coefficient window operators produce incorrect results if more than one statistical population is present within a window, for example, if a gray-level or gradient discontinuity is present. This paper shows one way to apply the theory of robust statistics to the data smoothing and derivative estimation problem. A robust window operator is demonstrated that preserves gray-level and gradient discontinuities in digital images as it smooths and estimates derivatives.

[1]  F. E. Allan XXIV.—The General Form of the Orthogonal Polynomials for Simple Series, with Proofs of their Simple Properties , 1931 .

[2]  Anil K. Jain,et al.  Segmentation and Classification of Range Images , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[4]  Demetri Terzopoulos,et al.  Multilevel computational processes for visual surface reconstruction , 1983, Comput. Vis. Graph. Image Process..

[5]  F. Hampel Contributions to the theory of robust estimation , 1968 .

[6]  Rama Chellappa,et al.  Edge Detection and Linear Feature Extraction Using a 2-D Random Field Model , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  P. Rousseeuw,et al.  The Change-of-Variance Curve and Optimal Redescending M-Estimators , 1981 .

[8]  W. W. Daniel Applied Nonparametric Statistics , 1979 .

[9]  P. Dierckx An algorithm for least-squares fitting of cubic spline surfaces to functions on a rectilinear mesh over a rectangle , 1977 .

[10]  Azriel Rosenfeld,et al.  Noise reduction in three-dimensional digital images , 1984, Pattern Recognit..

[11]  Ramesh C. Jain,et al.  Invariant surface characteristics for 3D object recognition in range images , 1985, Comput. Vis. Graph. Image Process..

[12]  R. Hogg Statistical Robustness: One View of its use in Applications Today , 1979 .

[13]  P. J. Huber Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .

[14]  Richard O. Duda,et al.  Use of the Hough transformation to detect lines and curves in pictures , 1972, CACM.

[15]  Ramesh C. Jain,et al.  Segmentation through Variable-Order Surface Fitting , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  R. Haralick,et al.  The Topographic Primal Sketch , 1983 .

[17]  Richard H. Bartels,et al.  Least-squares fitting using orthogonal multinomials , 1985, TOMS.

[18]  Demetri Terzopoulos,et al.  Multiresolution computation of visible-surface representations , 1984 .

[19]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[20]  Rama Chellappa,et al.  Two-dimensional robust spectrum estimation , 1988, IEEE Trans. Acoust. Speech Signal Process..

[21]  Birch B. Jeffrey Some convergence properties of iterated reweighted least squares in the location model , 1980 .

[22]  P. J. Huber Robust Estimation of a Location Parameter , 1964 .

[23]  Robert C. Bolles,et al.  A RANSAC-Based Approach to Model Fitting and Its Application to Finding Cylinders in Range Data , 1981, IJCAI.

[24]  David Shi Chen,et al.  A Data-Driven Intermediate Level Feature Extraction Algorithm , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Rama Chellappa,et al.  An iterative algorithm for robust 2-D spectrum estimation , 1984, ICASSP.

[26]  A. Eddington Stellar movements and the structure of the universe , 1914 .

[27]  Jake K. Aggarwal,et al.  Detection of Edges Using Range Information , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Gene H. Golub,et al.  Matrix computations , 1983 .

[29]  G. Box NON-NORMALITY AND TESTS ON VARIANCES , 1953 .

[30]  John W. Tukey,et al.  Exploratory Data Analysis. , 1979 .

[31]  Paul Beaudet,et al.  Rotationally invariant image operators , 1978 .

[32]  Robert M. Haralick,et al.  2D-3D pose estimation , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[33]  J. Tukey,et al.  The Fitting of Power Series, Meaning Polynomials, Illustrated on Band-Spectroscopic Data , 1974 .

[34]  Yrjö Neuvo,et al.  A New Class of Detail-Preserving Filters for Image Processing , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  S. Stigler Simon Newcomb, Percy Daniell, and the History of Robust Estimation 1885–1920 , 1972 .

[36]  W. Eric L. Grimson,et al.  Discontinuity detection for visual surface reconstruction , 1985, Comput. Vis. Graph. Image Process..

[37]  Larry S. Davis,et al.  A new class of edge-preserving smoothing filters , 1987, Pattern Recognit. Lett..

[38]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[39]  Nabih N. Abdelmalek L1 solution of overdetermined systems of linear equations , 1980, TOMS.

[40]  P. J. Huber Robust Statistical Procedures , 1977 .

[41]  W. Föstner Reliability analysis of parameter estimation in linear models with application to mensuration problems in computer vision , 1987 .

[42]  Manfred H. Hueckel A Local Visual Operator Which Recognizes Edges and Lines , 1973, JACM.

[43]  R. Haralick,et al.  A facet model for image data , 1981 .

[44]  Rangasami L. Kashyap,et al.  Robust image modeling techniques with an image restoration application , 1988, IEEE Trans. Acoust. Speech Signal Process..

[45]  F. Hampel Robust estimation: A condensed partial survey , 1973 .

[46]  G. Wise,et al.  A theoretical analysis of the properties of median filters , 1981 .

[47]  Thomas S. Huang,et al.  A fast two-dimensional median filtering algorithm , 1979 .

[48]  J. Tukey The Future of Data Analysis , 1962 .

[49]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[50]  David B. Cooper,et al.  Bayesian Recognition of Local 3-D Shape by Approximating Image Intensity Functions with Quadric Polynomials , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  M. Powell,et al.  Approximation theory and methods , 1984 .