Embedding Variants of Hypercubes with Dilation 2

Graph embedding has been known as a powerful tool for implementation of parallel algorithms and simulation of interconnection networks. In this paper, we introduce a technique to obtain a lower bound for the dilation of an embedding. Moreover, we give algorithms for embedding variants of hypercubes with dilation 2 proving that the lower bound obtained is sharp. Further, we compute the exact wirelength of embedding folded hypercubes and augmented cubes into hypercubes.

[1]  Kenneth Williams,et al.  A survey of solved problems and applications on bandwidth, edgesum, and profile of graphs , 1999, J. Graph Theory.

[2]  L. H. Harper Global Methods for Combinatorial Isoperimetric Problems , 2004 .

[3]  Rolland Trapp,et al.  The Cyclic Cutwidth of Trees , 1998, Discret. Appl. Math..

[4]  Sajal K. Das,et al.  An Edge-Isoperimetric Problem for Powers of the Petersen Graph , 2000 .

[5]  Kemal Efe,et al.  The Crossed Cube Architecture for Parallel Computation , 1992, IEEE Trans. Parallel Distributed Syst..

[6]  L. H. Harper,et al.  Embedding of Hypercubes into Grids , 1998, MFCS.

[7]  Jaroslav Opatrny,et al.  Embeddings of Complete Binary Trees into Grids and Extended Grids with Total Vertex-congestion 1 , 2000, Discret. Appl. Math..

[8]  Indra Rajasingh,et al.  Linear Wirelength of Folded Hypercubes , 2011, Math. Comput. Sci..

[9]  Bharati Rajan,et al.  Embedding of special classes of circulant networks, hypercubes and generalized Petersen graphs , 2012, Int. J. Comput. Math..

[10]  Bharati Rajan,et al.  Embedding of hypercubes into necklace, windmill and snake graphs , 2012, Inf. Process. Lett..

[11]  Bharati Rajan,et al.  Exact wirelength of hypercubes on a grid , 2009, Discret. Appl. Math..

[12]  Sergei L. Bezrukov Embedding complete trees into the hypercube , 2001, Discret. Appl. Math..

[13]  L. H. Harper,et al.  The circular wirelength problem for hypercubes , 1997 .

[14]  Xiaohua Jia,et al.  Embedding meshes into crossed cubes , 2007, Inf. Sci..

[15]  Václav Koubek,et al.  Optimal embeddings of generalized ladders into hypercubes , 2001, Discret. Math..

[16]  Matthias F. Stallmann,et al.  On Embedding Binary Trees into Hypercubes , 1995, J. Parallel Distributed Comput..

[17]  Yuan Yan Tang,et al.  Embedding meshes/tori in faulty crossed cubes , 2010, Inf. Process. Lett..

[18]  I. Rajasingh,et al.  On Embedding of m-Sequential k-ary Trees into Hypercubes , 2010 .

[19]  Albert William,et al.  Embedding of cycles and wheels into arbitrary trees , 2004, Networks.

[20]  Hong Wang,et al.  Efficient embeddings of ternary trees into hypercubes , 2003, J. Parallel Distributed Comput..

[21]  Ajay K. Gupta,et al.  Incomplete hypercubes: Algorithms and embeddings , 1994, The Journal of Supercomputing.

[22]  Jianxi Fan,et al.  Embedding meshes into locally twisted cubes , 2010, Inf. Sci..

[23]  Pao-Lien Lai,et al.  Embedding of tori and grids into twisted cubes , 2010, Theor. Comput. Sci..

[24]  Nian-Feng Tzeng,et al.  A Boolean Expression-Based Approach for Maximum Incomplete Subcube Identification in Faulty Hypercubes , 1997, IEEE Trans. Parallel Distributed Syst..

[25]  Chang-Hsiung Tsai Embedding of meshes in Möbius cubes , 2008, Theor. Comput. Sci..

[26]  Satoshi Tayu,et al.  On embedding binary trees into hypercubes , 2000 .

[27]  Jywe-Fei Fang,et al.  Embedding the incomplete hypercube in books , 2005, Inf. Process. Lett..

[28]  M. H. Schultz,et al.  Topological properties of hypercubes , 1988, IEEE Trans. Computers.

[29]  Markus Röttger,et al.  Efficient embeddings of grids into grids , 2001, Discret. Appl. Math..

[30]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[31]  Bharati Rajan,et al.  Embeddings of circulant networks , 2013, J. Comb. Optim..

[32]  L. H. Harper,et al.  The congestion of n-cube layout on a rectangular grid , 2000, Discret. Math..

[33]  Howard P. Katseff,et al.  Incomplete Hypercubes , 1988, IEEE Trans. Computers.

[34]  Ming-Chien Yang Path embedding in star graphs , 2009, Appl. Math. Comput..

[35]  Andrej Vodopivec On embeddings of snarks in the torus , 2008, Discret. Math..

[36]  Jun-Ming Xu,et al.  On reliability of the folded hypercubes , 2007, Inf. Sci..

[37]  Junming Xu Topological Structure and Analysis of Interconnection Networks , 2002, Network Theory and Applications.

[38]  Bharati Rajan,et al.  Embedding hypercubes into cylinders, snakes and caterpillars for minimizing wirelength , 2011, Discret. Appl. Math..

[39]  Paul D. Manuel Minimum average congestion of enhanced and augmented hypercubes into complete binary trees , 2011, Discret. Appl. Math..

[40]  Tomás Dvorák,et al.  Dense sets and embedding binary trees into hypercubes , 2007, Discret. Appl. Math..