Catalytic activity of Au nanoparticles

Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change with particle size. We find that the fraction of low-coordinated Au atoms scales approximately with the catalytic activity, suggesting that atoms on the corners and edges of Au nanoparticles are the active sites. This effect is explained using density functional calculations.

[1]  A. Corma,et al.  Single-site homogeneous and heterogeneized gold(III) hydrogenation catalysts: mechanistic implications. , 2006, Journal of the American Chemical Society.

[2]  A. Corma,et al.  Stabilization of cationic gold species on Au/CeO2 catalysts under working conditions , 2006 .

[3]  M. Bäumer,et al.  On the role of oxygen in stabilizing low-coordinated Au atoms. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[4]  Wenfu Yan,et al.  Evaluation of the Au size effect: CO oxidation catalyzed by Au/TiO2. , 2006 .

[5]  Shawn D. Lin,et al.  Ammonia oxidation over Au/MOx/γ-Al2O3—activity, selectivity and FTIR measurements , 2004 .

[6]  Hannu Häkkinen,et al.  When Gold Is Not Noble: Nanoscale Gold Catalysts , 1999 .

[7]  D. Goodman,et al.  Structure-reactivity correlations for oxide-supported metal catalysts: new perspectives from STM , 2000 .

[8]  D. Goodman,et al.  Structure sensitivity of CO oxidation over model Au/TiO22 catalysts , 1998 .

[9]  M. Haruta,et al.  Effect of physical mixing of CsCl with Au/Ti-MCM-41 on the gas-phase epoxidation of propene using H2 and O2:: Drastic depression of H2 consumption , 2000 .

[10]  J. Nørskov,et al.  Insights into the reactivity of supported Au nanoparticles: combining theory and experiments , 2007 .

[11]  Q. Pankhurst,et al.  Microstructural comparison of calcined and uncalcined gold/iron-oxide catalysts for low-temperature CO oxidation , 2002 .

[12]  J. Nørskov,et al.  The electronic structure effect in heterogeneous catalysis , 2005 .

[13]  B. Hammer,et al.  Active role of oxide support during CO oxidation at Au/MgO. , 2003, Physical review letters.

[14]  D. Goodman,et al.  Structural and electronic properties of Au on TiO{sub 2}(110) , 2000 .

[15]  B. Gates,et al.  Catalysis by supported gold: correlation between catalytic activity for CO oxidation and oxidation states of gold. , 2004, Journal of the American Chemical Society.

[16]  M. Biener,et al.  Enhanced transient reactivity of an O-sputtered Au(111) surface , 2005 .

[17]  Harold H. Kung,et al.  Supported Au catalysts for low temperature CO oxidation , 2003 .

[18]  P. Claus,et al.  Supported gold nanoparticles: in-depth catalyst characterization and application in hydrogenation and oxidation reactions , 2002 .

[19]  Núria López,et al.  On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation , 2004 .

[20]  U. Landman,et al.  Bonding trends and dimensionality crossover of gold nanoclusters on metal-supported MgO thin films. , 2006, Physical review letters.

[21]  B. Gates,et al.  Mononuclear AuIII and AuI Complexes Bonded to Zeolite NaY: Catalysts for CO Oxidation at 298 K , 2004 .

[22]  Jens K Nørskov,et al.  Catalytic CO oxidation by a gold nanoparticle: a density functional study. , 2002, Journal of the American Chemical Society.

[23]  H. Freund,et al.  Surface chemistry of catalysis by gold , 2004 .

[24]  B. Koel,et al.  CO adsorption and reaction on clean and oxygen-covered Au(211) surfaces. , 2006, The journal of physical chemistry. B.

[25]  Z. Hao,et al.  Mechanism of Gold Activation in Supported Gold Catalysts for CO Oxidation , 2000 .

[26]  Bernard Delmon,et al.  Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4 , 1993 .

[27]  H. Wan,et al.  Preparation of supported gold catalysts from gold complexes and their catalytic activities for CO oxidation , 1996 .

[28]  T. Janssens,et al.  Relation between nanoscale Au particle structure and activity for CO oxidation on supported gold catalysts , 2006 .

[29]  D. Goodman,et al.  Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties , 1998, Science.

[30]  Horia Metiu,et al.  Density Functional Study of the CO Oxidation on a Doped Rutile TiO2(110): Effect of Ionic Au in Catalysis , 2006 .

[31]  アーカン,セマル,et al.  Catalytic selective oxidation process and therefore , 1999 .

[32]  Betina Jørgensen,et al.  Formation of acetic acid by aqueous-phase oxidation of ethanol with air in the presence of a heterogeneous gold catalyst. , 2006, Angewandte Chemie.

[33]  M. Haruta Gold as a Low-Temperature Oxidation Catalyst: Factors Controlling Activity and Selectivity , 1998 .

[34]  T. Janssens,et al.  New method for analysis of nanoparticle geometry in supported fcc metal catalysts with scanning transmission electron microscopy. , 2006, The journal of physical chemistry. B.

[35]  H. Kung,et al.  Synergism Between Pt/Al2O3 and Au/TiO2 in the Low Temperature Oxidation of Propene , 2004 .

[36]  Masatake Haruta,et al.  Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide , 1989 .

[37]  J. Moulijn,et al.  Role of gold cations in the oxidation of carbon monoxide catalyzed by iron oxide-supported gold , 2006 .

[38]  G. Hutchings,et al.  Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst. , 2002, Chemical communications.

[39]  B. E. Nieuwenhuys,et al.  Comparative studies of the N2O/H2, N2O/CO, H2/O2 and CO/O2 reactions on supported gold catalysts: effect of the addition of various oxides , 2003 .

[40]  Xiaohong Xu,et al.  Low temperature CO oxidation over unsupported nanoporous gold. , 2007, Journal of the American Chemical Society.

[41]  A. Corma,et al.  Gold (I) and (III) catalyze Suzuki cross-coupling and homocoupling, respectively , 2006 .

[42]  R. M. Finch,et al.  Identification of active phases in Au-Fe catalysts for low-temperature CO oxidation , 1999 .

[43]  M. S. Hegde,et al.  Characterization and Catalytic Properties of Combustion Synthesized Au/CeO2 Catalyst , 2002 .

[44]  B. E. Nieuwenhuys,et al.  Alkali (earth)-doped Au/Al2O3 catalysts for the total oxidation of propene , 2005 .

[45]  S. Schroeder,et al.  Adsorption of carbon monoxide on Au(1 1 0)-(1 × 2) , 2003 .

[46]  B. Hammer Special Sites at Noble and Late Transition Metal Catalysts , 2006 .

[47]  P Hu,et al.  Identifying an O2 supply pathway in CO oxidation on Au/TiO2(110): a density functional theory study on the intrinsic role of water. , 2006, Journal of the American Chemical Society.

[48]  C. Louis,et al.  Activation of oxygen on gold/alumina catalysts: in situ high-energy-resolution fluorescence and time-resolved X-ray spectroscopy. , 2006, Angewandte Chemie.

[49]  Ali Alavi,et al.  Catalytic role of gold in gold-based catalysts: a density functional theory study on the CO oxidation on gold. , 2002, Journal of the American Chemical Society.

[50]  G. Hutchings,et al.  Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions , 2005, Nature.

[51]  B. E. Nieuwenhuys,et al.  The effect of different types of additives on the catalytic activity of Au/Al2O3 in propene total oxidation: transition metal oxides and ceria , 2005 .

[52]  C. Friend,et al.  Enhancement of O2 dissociation on Au111 by adsorbed oxygen: implications for oxidation catalysis. , 2005, Journal of the American Chemical Society.

[53]  Katharina Al-Shamery,et al.  Au deposits on graphite: On the nature of high temperature desorption peaks in CO thermal desorption spectra , 2006 .

[54]  A. Corma,et al.  A collaborative effect between gold and a support induces the selective oxidation of alcohols. , 2005, Angewandte Chemie.

[55]  J. Nørskov,et al.  Making gold less noble , 2000 .

[56]  Masatake Haruta,et al.  Size- and support-dependency in the catalysis of gold , 1997 .

[57]  D. Matthey,et al.  Enhanced Bonding of Gold Nanoparticles on Oxidized TiO2(110) , 2007, Science.

[58]  H. Freund,et al.  Do quantum size effects control CO adsorption on gold nanoparticles? , 2004, Angewandte Chemie.

[59]  J. Niemantsverdriet,et al.  Zeolite NaY-supported gold complexes prepared from Au(CH3)2(C5H7O2): reactivity with carbon monoxide , 2005 .

[60]  G. Hutchings,et al.  Oxidation of glycerol using supported Pt, Pd and Au catalysts , 2003 .

[61]  B. Hammer,et al.  Adsorption of O2 and oxidation of CO at Au nanoparticles supported by TiO2(110). , 2004, The Journal of chemical physics.

[62]  D. Goodman,et al.  CO oxidation over Au/TiO2 prepared from metal-organic gold complexes , 2006 .

[63]  G. Hutchings,et al.  Oxidation of Glycerol Using Supported Gold Catalysts , 2004 .

[64]  D. Goodman,et al.  Oxidation Catalysis by Supported Gold Nano-Clusters , 2002 .

[65]  M. Bäumer,et al.  Size and Support Effects for CO Adsorption on Gold Model Catalysts , 2003 .

[66]  A. Corma,et al.  Stabilization of Au(III) on heterogeneous catalysts and their catalytic similarities with homogeneous Au(III) metal organic complexes , 2005 .

[67]  T. Akita,et al.  Low-temperature activity of Au/CeO2 for water gas shift reaction, and characterization by ADF-STEM, temperature-programmed reaction, and pulse reaction , 2005 .

[68]  J. Nørskov,et al.  Why gold is the noblest of all the metals , 1995, Nature.

[69]  Thomas Bligaard,et al.  The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis , 2004 .

[70]  Bjørk Hammer,et al.  Some recent theoretical advances in the understanding of the catalytic activity of Au , 2005 .

[71]  J. Nørskov,et al.  Theoretical study of the Au/TiO2(110) interface , 2002 .

[72]  T. Akita,et al.  Direct Production of Hydrogen Peroxide from H2 and O2 over Highly Dispersed Au catalysts , 2003 .

[73]  Robert J. Davis,et al.  Effect of alumina and titania on the oxidation of CO over Au nanoparticles evaluated by 13C isotopic transient analysis , 2006 .

[74]  V. Dravid,et al.  Direct evidence of oxidized gold on supported gold catalysts. , 2005, The journal of physical chemistry. B.

[75]  A. Gavriilidis,et al.  Supported Au Catalysts for Low-Temperature CO Oxidation Prepared by Impregnation , 2002 .

[76]  Toshio Hayashi,et al.  Vapor-Phase Selective Oxidation of Aliphatic Hydrocarbons over Gold Deposited on Mesoporous Titanium Silicates in the Co-Presence of Oxygen and Hydrogen , 1999 .

[77]  B. Koel,et al.  Oxygen adsorption and oxidation reactions on Au(2 1 1) surfaces: Exposures using O 2 at high pressures and ozone (O 3 ) in UHV , 2006 .

[78]  R. Burch Gold catalysts for pure hydrogen production in the water-gas shift reaction: activity, structure and reaction mechanism. , 2006, Physical chemistry chemical physics : PCCP.

[79]  J. Grunwaldt,et al.  Comparative study of Au/TiO2 and Au/ZrO2 catalysts for low-temperature CO oxidation , 1999 .

[80]  Bert M. Weckhuysen,et al.  The Production of Propene Oxide: Catalytic Processes and Recent Developments , 2006 .

[81]  D. Goodman,et al.  Scanning tunneling microscopy studies of metal clusters supported on TiO2 (110): Morphology and electronic structure , 1998 .

[82]  B. E. Nieuwenhuys,et al.  Oxidation Reactions over Multi-Component Catalysts: Low-Temperature CO Oxidation and the Total Oxidation of CH4 , 2001 .

[83]  M. Haruta,et al.  Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for the oxidation of CO and of H2 , 1998 .

[84]  Bjørk Hammer,et al.  Theoretical study of CO oxidation on Au nanoparticles supported by MgO(100) , 2004 .

[85]  M. Haruta,et al.  A selective CO sensor using Ti-doped α-Fe2O3 with coprecipitated ultrafine particles of gold , 1988 .

[86]  B. Gates,et al.  Activation of Au/γ-Al2O3 Catalysts for CO Oxidation: Characterization by X-ray Absorption Near Edge Structure and Temperature Programmed Reduction , 2004 .

[87]  B. E. Nieuwenhuys,et al.  Supported gold/MOx catalysts for NO/H2 and CO/O2 reactions , 1999 .

[88]  Avelino Corma,et al.  Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude. , 2004, Angewandte Chemie.

[89]  Francis Delannay,et al.  Fine Structure of Novel Gold Catalysts Prepared by Coprecipitation , 1988 .

[90]  M. Vannice,et al.  Low temperature CO oxidation over Au/TiO2 and Au/SiO2 catalysts , 1993 .

[91]  Hiroshi Sano,et al.  Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C , 1987 .

[92]  J. Nørskov,et al.  The adhesion and shape of nanosized Au particles in a Au/TiO2 catalyst , 2004 .

[93]  Martin Muhler,et al.  CO Oxidation over Supported Gold Catalysts—“Inert” and “Active” Support Materials and Their Role for the Oxygen Supply during Reaction , 2001 .

[94]  H. Freund,et al.  CO adsorption on oxide supported gold: from small clusters to monolayer islands and three-dimensional nanoparticles , 2004 .

[95]  G. Mills,et al.  Oxygen adsorption on Au clusters and a rough Au(111) surface: The role of surface flatness, electron confinement, excess electrons, and band gap , 2003 .

[96]  G. Hutchings,et al.  Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide. , 2002, Chemical communications.

[97]  B. E. Nieuwenhuys,et al.  A comparative study of the oxidation of CO and CH4 over Au/MOx/Al2O3 catalysts , 2001 .

[98]  P. Hollins,et al.  Adsorption of carbon monoxide on the gold(332) surface , 1996 .