"Pudding mold" band drives large thermopower in NaxCoO2

In the present study, we pin down the origin of the coexistence of the large thermopower and the low resistivity in Na x CoO 2 . It is revealed that not just the density of states (DOS), the effective mass, nor the band width, but the peculiar shape of the a 1 g band referred to as the “pudding mold” type, which consists of a dispersive portion and a somewhat flat portion, is playing an important role in this phenomenon. The present study provides a new guiding principle for designing good thermoelectric materials.

[1]  M. Mochizuki,et al.  Precise Control of Band Filling in NaxCoO2 , 2007, 0704.1065.

[2]  David J. Singh,et al.  Thermoelectric properties of rhodates: layered beta SrRh2O4 and spinel ZnRh2O4 , 2007 .

[3]  R. Arita,et al.  Unified origin for the 3D magnetism and superconductivity in NaxCoO2. , 2006, Physical review letters.

[4]  A. Shorikov,et al.  Electronic theory for itinerant in-plane magnetic fluctuations in NaxCoO2 , 2006, cond-mat/0608327.

[5]  M. Mochizuki,et al.  Deformation of Electronic Structures Due to CoO6 Distortion and Phase Diagrams of NaxCoO2.yH2O , 2006, cond-mat/0609443.

[6]  K. Ishizaka,et al.  Angle-resolved photoemission study of the cobalt oxide superconductor Na(x)CoO(2) x yH(2)O: observation of the Fermi surface. , 2006, Physical review letters.

[7]  R. Cava,et al.  Large enhancement of the thermopower in NaxCoO2 at high Na doping , 2006, Nature materials.

[8]  R. Arita,et al.  Extended s -wave pairing originating from the a 1g band in Na x CoO 2 ∙yH 2 O : Single-band U-V model with fluctuation exchange method , 2006 .

[9]  H. Takagi,et al.  Correlated Metallic Phase in a Doped Band Insulator Sr1-xRh2O4 , 2006 .

[10]  I. Terasaki,et al.  Physical Properties of Bi-Based Rhodium Oxides with RhO2 Hexagonal Layers , 2005 .

[11]  H. Matsui,et al.  ARPES on Na0.6CoO2: Fermi surface and unusual band dispersion. , 2003, Physical review letters.

[12]  M. Shikano,et al.  Contribution of electronic structure to the large thermoelectric power in layered cobalt oxides , 2004 .

[13]  K. Lee,et al.  Charge disproportionation and spin ordering tendencies in Na x CoO 2 , 2004, cond-mat/0403018.

[14]  R. Arita,et al.  Possible spin-tripletf-wave pairing due to disconnected fermi surfaces in NaxCoO2.yH2O. , 2003, Physical review letters.

[15]  E. Rotenberg,et al.  Fermi surface and quasiparticle dynamics of Na0.7CoO2 investigated by angle-resolved photoemission spectroscopy. , 2003, Physical review letters.

[16]  R. Cava,et al.  Spin entropy as the likely source of enhanced thermopower in NaxCo2O4 , 2003, Nature.

[17]  Kazunori Takada,et al.  Superconductivity in two-dimensional CoO2 layers , 2003, Nature.

[18]  T. Motohashi,et al.  Unconventional magnetic transition and transport behavior in Na0.75CoO2 , 2002, cond-mat/0212395.

[19]  Y. Morii,et al.  Modulated Structure of the Thermoelectric Compound [Ca2CoO3]0.62CoO2 , 2002 .

[20]  S. Maekawa,et al.  Effects of spin and orbital degeneracy on the thermopower of strongly correlated systems. , 2001, Physical review letters.

[21]  A. Maignan,et al.  Large thermopower in a metallic cobaltite: The layered Tl-Sr-Co-O misfit , 2001 .

[22]  Kazuo T. Nakamura,et al.  High-Temperature Thermoelectric Properties of NaxCoO2-δ Single Crystals , 2001 .

[23]  David J. Singh Electronic structure of NaCo 2 O 4 , 2000 .

[24]  Ryoji Funahashi,et al.  High temperature thermoelectric properties of oxide Ca9Co12O28 , 1999 .

[25]  Ichiro Terasaki,et al.  Large thermoelectric power in NaCo 2 O 4 single crystals , 1997 .