Photocatalytic CO2 Reduction Based on a Re(I)-Integrated Conjugated Microporous Polymer: Role of a Sacrificial Electron Donor in Product Selectivity and Efficiency

[1]  T. Maji,et al.  Visible Light Driven Photocatalytic CO2 Reduction to CO/CH4 using Metal-Organic 'Soft' Coordination Polymer Gel. , 2022, Angewandte Chemie.

[2]  T. Maji,et al.  Metal-Free Catalysis: A Redox-Active Donor-Acceptor Conjugated Microporous Polymer for Selective Visible-Light-Driven CO2 Reduction to CH4. , 2021, Journal of the American Chemical Society.

[3]  Liang‐Nian He,et al.  Prolonging the Triplet State Lifetimes of Rhenium Complexes with Imidazole-pyridine Framework for Efficient CO2 Photoreduction. , 2021, Chemistry.

[4]  J. Gascón,et al.  Metal-Organic Frameworks: Molecules or Semiconductors in Photocatalysis? , 2021, Angewandte Chemie.

[5]  Chenxiang Lin,et al.  Robust Biological Hydrogen-Bonded Organic Framework with Post-Functionalized Rhenium(I) Sites for Efficient Heterogeneous Visible Light-Driven CO2 Reduction. , 2021, Angewandte Chemie.

[6]  M. Baik,et al.  Solution-Processable, Crystalline π-Conjugated Two-Dimensional Polymers with High Charge Carrier Mobility , 2020, Chem.

[7]  Hai‐Long Jiang,et al.  Photocatalytic CO2 reduction over metal-organic framework-based materials , 2020 .

[8]  Paolo Fornasiero,et al.  Updates on the Roadmap for Photocatalysis , 2020 .

[9]  Cheng Wang,et al.  Photo-Activation of Cu Centers in Metal-Organic Frameworks for Selective CO2 Conversion to Ethanol. , 2019, Journal of the American Chemical Society.

[10]  Xiaoliang Xu,et al.  Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers , 2019, Nature Energy.

[11]  Hao Ming Chen,et al.  Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO , 2019, Science.

[12]  K. Yamauchi,et al.  Highly Efficient and Selective Photocatalytic CO2 Reduction to CO in Water by a Cobalt Porphyrin Molecular Catalyst , 2019, ACS Catalysis.

[13]  B. Liu,et al.  Single-Atom Catalysis toward Efficient CO2 Conversion to CO and Formate Products. , 2018, Accounts of chemical research.

[14]  Can Yang,et al.  Functional Conjugated Polymers for CO2 Reduction Using Visible Light. , 2018, Chemistry.

[15]  I. Hermans,et al.  2D Covalent Organic Frameworks as Intrinsic Photocatalysts for Visible Light-Driven CO2 Reduction. , 2018, Journal of the American Chemical Society.

[16]  R. Haiges,et al.  Covalent-Organic Frameworks Composed of Rhenium Bipyridine and Metal Porphyrins: Designing Heterobimetallic Frameworks with Two Distinct Metal Sites. , 2018, ACS applied materials & interfaces.

[17]  F. Dong,et al.  Photocatalytic Oxidative Dehydrogenation of Ethane Using CO2 as a Soft Oxidant over Pd/TiO2 Catalysts to C2H4 and Syngas , 2018, ACS Catalysis.

[18]  Breno L. Souza,et al.  Photocatalytic CO2 Reduction by Re(I) Polypyridyl Complexes Immobilized on Niobates Nanoscrolls , 2018 .

[19]  S. Shirai,et al.  Re(bpy)(CO)3 Cl Immobilized on Bipyridine-Periodic Mesoporous Organosilica for Photocatalytic CO2 Reduction. , 2018, Chemistry.

[20]  O. Yaghi,et al.  The role of reticular chemistry in the design of CO2 reduction catalysts , 2018, Nature Materials.

[21]  C. Kubiak,et al.  Kinetic and Mechanistic Effects of Bipyridine (bpy) Substituent, Labile Ligand, and Brønsted Acid on Electrocatalytic CO2 Reduction by Re(bpy) Complexes , 2018 .

[22]  D. Farrusseng,et al.  Hammett Parameter in Microporous Solids as Macroligands for Heterogenized Photocatalysts , 2018 .

[23]  O. Ishitani,et al.  Reaction mechanisms of catalytic photochemical CO2 reduction using Re(I) and Ru(II) complexes , 2017, Coordination Chemistry Reviews.

[24]  Y. Zhang,et al.  Bi2 MoO6 Nanostrip Networks for Enhanced Visible-Light Photocatalytic Reduction of CO2 to CH4. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[25]  C. Grimes,et al.  Highly enhanced and stable activity of defect-induced titania nanoparticles for solar light-driven CO 2 reduction into CH 4 , 2017 .

[26]  Wei You,et al.  Hierarchical Porous O-Doped g-C3 N4 with Enhanced Photocatalytic CO2 Reduction Activity. , 2017, Small.

[27]  Christopher A. Trickett,et al.  Plasmon-Enhanced Photocatalytic CO(2) Conversion within Metal-Organic Frameworks under Visible Light. , 2017, Journal of the American Chemical Society.

[28]  J. Muckerman,et al.  Mechanism of Photocatalytic Reduction of CO2 by Re(bpy)(CO)3Cl from Differences in Carbon Isotope Discrimination , 2016 .

[29]  Yi Luo,et al.  Visible-Light Photoreduction of CO2 in a Metal-Organic Framework: Boosting Electron-Hole Separation via Electron Trap States. , 2015, Journal of the American Chemical Society.

[30]  Yuguang Ma,et al.  π-Conjugated Microporous Polymer Films: Designed Synthesis, Conducting Properties, and Photoenergy Conversions , 2015, Angewandte Chemie.

[31]  Z. Mi,et al.  Wafer-Level Artificial Photosynthesis for CO2 Reduction into CH4 and CO Using GaN Nanowires , 2015 .

[32]  M. Himmelsbach,et al.  Using the Alkynyl-Substituted Rhenium(I) Complex (4,4′-Bisphenyl-Ethynyl-2,2′-Bipyridyl)Re(CO)3Cl as Catalyst for CO2 Reduction—Synthesis, Characterization, and Application , 2015, Electrocatalysis.

[33]  Jinhua Ye,et al.  Photoreduction of CO2 over the well-crystallized ordered mesoporous TiO2 with the confined space effect , 2014 .

[34]  Di Wu,et al.  Single-crystalline, ultrathin ZnGa(2)O(4) nanosheet scaffolds to promote photocatalytic activity in CO(2) reduction into methane. , 2014, ACS applied materials & interfaces.

[35]  Xinchen Wang,et al.  Cobalt imidazolate metal-organic frameworks photosplit CO(2) under mild reaction conditions. , 2014, Angewandte Chemie.

[36]  Jonas Baltrusaitis,et al.  Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes , 2013 .

[37]  Gonghu Li,et al.  Photocatalytic CO2 Reduction and Surface Immobilization of a Tricarbonyl Re(I) Compound Modified with Amide Groups , 2013 .

[38]  A. Corma,et al.  Photocatalytic CO2 Reduction by TiO2 and Related Titanium Containing Solids , 2012 .

[39]  Lianjun Liu,et al.  Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry , 2012 .

[40]  T. Meyer,et al.  Selective electrocatalytic reduction of CO2 to formate by water-stable iridium dihydride pincer complexes. , 2012, Journal of the American Chemical Society.

[41]  Chao Wang,et al.  Metal-organic conjugated microporous polymers. , 2011, Angewandte Chemie.

[42]  E. Fujita,et al.  Toward more efficient photochemical CO2 reduction: Use of scCO2 or photogenerated hydrides , 2010 .

[43]  C. Kubiak,et al.  Re(bipy-tBu)(CO)3Cl-improved catalytic activity for reduction of carbon dioxide: IR-spectroelectrochemical and mechanistic studies. , 2010, Inorganic chemistry.

[44]  J. Wu,et al.  In situ DRIFTS study of photocatalytic CO2 reduction under UV irradiation , 2010 .

[45]  B. P. Sullivan,et al.  Electrocatalytic reduction of carbon dioxide by 2,2'-bipyridine complexes of rhodium and iridium , 1988 .

[46]  G. Ewing,et al.  Infrared Detection of the Formyl Radical HCO , 1960 .

[47]  E. Prosen,et al.  Heats of combustion and formation of the paraffin hydrocarbons at 25 degrees C , 1945 .

[48]  W. Roth,et al.  Die Verbrennungs- und Bildungswärme von Kohlenoxyd und Methan , 1932 .

[49]  G. Pilcher,et al.  Measurements of heats of combustion by flame calorimetry. Part 8.—Methane, ethane, propane, n-butane and 2-methylpropane , 1972 .

[50]  F. Rossini The heats of combustion methane and carbon monoxide , 1931 .