Effect of cysteine on bovine serum albumin (BSA) denaturation induced by solar ultraviolet (UVA, UVB) irradiation.

Long-term exposure to natural sun-light (UVA, UVB) induced fluorescence and caused disulfide bond formation in bovine serum albumin (BSA). The addition of cysteine enhanced the bond formation to such an extent that a solution of BSA was transformed into an insoluble gel. The disulfide bonds in the gels are derived from internal-SH groups of protein. This reaction occurred even if cysteine was added after exposure to ultraviolet (UV)-irradiation. Fluorescent substances seem to be involved in this reaction. On the other hand, low concentrations of cysteine (less than 5 mM) inhibited both fluorescence and disulfide bond formation. The addition of glutathione to BSA produced the same effect as that of cysteine. The addition of thiourea to BSA solution inhibited fluorescence, but did not inhibit disulfide bond formation. We assume that external-SH compounds such as cysteine and glutathione, which have high reactivity with hydroxyl radicals (.OH), act not only as free-radical scavengers, but also as radical mediators in the polymerization of protein through disulfide cross-links induced by UV-irradiation. Solar UVA as well as UVB irradiation are shown to have the same effect on the protein polymerization.