Gas discharge lasers pumped by generators with inductive energy storage

Laser and discharge parameters in mixtures of rare gases with halogens driven by a pre-pulse-sustainer circuit technique are studied. Inductive energy storage with semiconductor opening switch was used for the high-voltage pre-pulse formation. It was shown that the pre-pulse with a high amplitude and short rise-time along with sharp increase of discharge current and uniform UV- and x-ray preionization allow to form long-lived stable discharge in halogen containing gas mixtures. Improve of both pulse duration and output energy was achieved for XeCl-, XeF- and KrF excimer lasers. Maximal laser output was as high as 1 J at intrinsic efficiency up to 4%. Increase of radiation power and laser pulse duration were obtained in N2-NF3 (SF6) and He-F2 (NF3) gas mixtures, as well.

[1]  William H. Long,et al.  Efficient discharge pumping of an XeCl laser using a high‐voltage prepulse , 1983 .

[2]  Stephane Pasquiers,et al.  Importance of pre-ionisation for the non-chain discharge-pumped HF laser , 2001 .

[3]  Viktor F Tarasenko,et al.  High repetition rate pulsed X-ray source employing supershort avalanche electron beams , 2005 .

[4]  Alexei N. Panchenko,et al.  Long-Pulse-Discharge XeF and KrF Lasers Pumped by a Generator with Inductive Energy Storage , 2002 .

[5]  Jeffrey I. Levatter,et al.  Long pulse behavior of the avalanche/self‐sustained discharge pumped XeCl laser , 1981 .

[6]  A A Belevtsev,et al.  Once again on the role of UV illumination in non-chain electric-discharge HF(DF) lasers , 2004 .

[7]  A. M. Razhev,et al.  703-to 731-nm FI laser excited by a transverse inductive discharge , 2005 .

[8]  Alexei N. Panchenko,et al.  Formation of pumping discharge of XeCl laser by means of semiconductor opening switch , 2002, Atomic and Molecular Pulsed Lasers.

[9]  T. Bearpark,et al.  An X-ray preionised self sustained discharge HF/DF laser , 1996 .

[10]  Viktor F Tarasenko,et al.  X-ray radiation due to nanosecond volume discharges in air under atmospheric pressure , 2006 .

[11]  Rod S. Taylor,et al.  Ultralong optical‐pulse corona preionized XeCl laser , 1989 .

[12]  A. Mandl,et al.  XeF laser at a high electron beam pump rate , 1987 .

[13]  M. A. Kovacs,et al.  VISIBLE LASER ACTION IN FLUORINE I , 1970 .

[14]  U. Rebhan,et al.  A high power N2-laser of long pulse duration , 1980 .

[15]  P Parvin,et al.  Spectral Lines of the Atomic-Fluorine Laser from 2 psi (absolute) to 5.5 atm. , 2001, Applied optics.

[16]  Viktor F Tarasenko,et al.  On the mechanism of subnanosecond electron beam formation in gas-filled diodes , 2006 .

[17]  Mark J. Kushner,et al.  Microarcs as a Termination Mechanism of Optical Pulses in Electric-Discharge-Excited , 1991 .

[18]  Irving J. Bigio,et al.  High‐power visible laser action in neutral atomic fluorine , 1976 .

[19]  Minoru Obara,et al.  Intrinsic efficiency comparison in various low‐pressure XeF laser mixtures pumped at high excitation rates and with short‐pulse electron beam pumping , 1988 .

[20]  Wilhelmus J. Witteman,et al.  Optimisation of the pulse duration of a discharge-pumped XeF(B→X) excimer laser , 1995 .

[21]  Alexei N. Panchenko,et al.  Non-chain HF and DF lasers pumped by electric discharge , 2005, International Symposium on High Power Laser Systems and Applications.

[22]  S. A. Yampolskaya,et al.  Two-dimensional simulation of initiation and evolution of a plasma channel in the XeCl laser pumping discharge , 2003 .

[23]  A. J. Kearsley,et al.  High‐power nitrogen laser , 1982 .