Corpus callosum has different channels for transmission of spatial frequency information

[1]  A. Cowey,et al.  Changes in connectivity after visual cortical brain damage underlie altered visual function. , 2008, Brain : a journal of neurology.

[2]  W. Brown,et al.  Individual differences in interhemispheric transfer time (IHTT) as measured by event related potentials , 2007, Neuropsychologia.

[3]  Clara D. Martin,et al.  ERP evidence for the split fovea theory , 2007, Brain Research.

[4]  Robin Laycock,et al.  Evidence for fast signals and later processing in human V1/V2 and V5/MT+: A TMS study of motion perception. , 2007, Journal of neurophysiology.

[5]  Ankoor S. Shah,et al.  Functional anatomy and interaction of fast and slow visual pathways in macaque monkeys. , 2007, Cerebral cortex.

[6]  W. Singer,et al.  Modulation of Neuronal Interactions Through Neuronal Synchronization , 2007, Science.

[7]  R. Knight Neural Networks Debunk Phrenology , 2007, Science.

[8]  A Mirzajani,et al.  Spatial frequency modulates visual cortical response to temporal frequency variation of visual stimuli: an fMRI study , 2007, Physiological measurement.

[9]  René Westerhausen,et al.  Interhemispheric transfer time and structural properties of the corpus callosum , 2006, Neuroscience Letters.

[10]  Reto Meuli,et al.  Interhemispheric integration at different spatial scales: the evidence from EEG coherence and FMRI. , 2006, Journal of neurophysiology.

[11]  Heidi Johansen-Berg,et al.  Unconscious vision: new insights into the neuronal correlate of blindsight using diffusion tractography. , 2006, Brain : a journal of neurology.

[12]  Peter A. Tass,et al.  Pattern reversal visual evoked responses of V1/V2 and V5/MT as revealed by MEG combined with probabilistic cytoarchitectonic maps , 2006, NeuroImage.

[13]  H. Engeland,et al.  Time-varying differences in evoked potentials elicited by high versus low spatial frequencies: a topographical and source analysis , 2005, Clinical Neurophysiology.

[14]  D. Bradley,et al.  Structure and function of visual area MT. , 2005, Annual review of neuroscience.

[15]  J L Kenemans,et al.  The relationship between local and global processing and the processing of high and low spatial frequencies studied by event-related potentials and source modeling. , 2005, Brain research. Cognitive brain research.

[16]  G. Hynd,et al.  The Role of the Corpus Callosum in Interhemispheric Transfer of Information: Excitation or Inhibition? , 2005, Neuropsychology Review.

[17]  M. Corballis,et al.  Speeded right-to-left information transfer: the result of speeded transmission in right-hemisphere axons? , 2005, Neuroscience Letters.

[18]  Steven A. Hillyard,et al.  Identification of the neural sources of the pattern-reversal VEP , 2005, NeuroImage.

[19]  Lawrence C. Sincich,et al.  Bypassing V1: a direct geniculate input to area MT , 2004, Nature Neuroscience.

[20]  Maryse Lassonde,et al.  Inter- and Intra-hemispheric Processing of Visual Event-related Potentials in the Absence of the Corpus Callosum , 2004, Journal of Cognitive Neuroscience.

[21]  F. Aboitiz,et al.  One hundred million years of interhemispheric communication: the history of the corpus callosum. , 2003, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[22]  J. Leon Kenemans,et al.  Selective attention to spatial frequency: an ERP and source localization analysis , 2002, Clinical Neurophysiology.

[23]  A. Vassilev,et al.  On the delay in processing high spatial frequency visual information: reaction time and VEP latency study of the effect of local intensity of stimulation , 2002, Vision Research.

[24]  Brigitte Rockstroh,et al.  Reduced interhemispheric transmission in schizophrenia patients: evidence from event-related potentials , 2002, Neuroscience Letters.

[25]  F. Di Russo,et al.  Electrophysiological analysis of cortical mechanisms of selective attention to high and low spatial frequencies , 2001, Clinical Neurophysiology.

[26]  C. Caltagirone,et al.  Interhemispheric transfer time in a patient with a partial lesion of the corpus callosum , 2001, Neuroreport.

[27]  Francisco Aboitiz,et al.  Species Differences and Similarities in the Fine Structure of the Mammalian Corpus callosum , 2001, Brain, Behavior and Evolution.

[28]  Ryusuke Kakigi,et al.  Effects of check size on pattern reversal visual evoked magnetic field and potential , 2000, Brain Research.

[29]  G. R Mangun,et al.  On the processing of spatial frequencies as revealed by evoked-potential source modeling , 2000, Clinical Neurophysiology.

[30]  M S Gazzaniga,et al.  Insights into the functional specificity of the human corpus callosum. , 2000, Brain : a journal of neurology.

[31]  E. Basar,et al.  Brain oscillations in perception and memory. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[32]  M. Jeeves,et al.  Bilateral field advantage and evoked potential interhemispheric transmission in commissurotomy and callosal agenesis , 1999, Neuropsychologia.

[33]  Jean-Christophe Houzel,et al.  Visual inter-hemispheric processing: Constraints and potentialities set by axonal morphology , 1999, Journal of Physiology-Paris.

[34]  Milena Mihaylova,et al.  Peripheral and central delay in processing high spatial frequencies: reaction time and VEP latency studies , 1999, Vision Research.

[35]  Canan Basar-Eroglu,et al.  Visual evoked potential interhemispheric transfer time in different frequency bands , 1999, Clinical Neurophysiology.

[36]  A Yamadori,et al.  Dissociation of letter and picture naming resulting from callosal disconnection , 1998, Neurology.

[37]  Shozo Tobimatsu,et al.  Visual evoked cortical magnetic responses to checkerboard pattern reversal stimulation: A study on the neural generators of N75, P100 and N145 , 1998, Journal of the Neurological Sciences.

[38]  Francois Jouen,et al.  Spatial Frequency and Right Hemisphere: An Electrophysiological Investigation , 1998, Brain and Cognition.

[39]  D J Felleman,et al.  Modular Organization of Occipito-Temporal Pathways: Cortical Connections between Visual Area 4 and Visual Area 2 and Posterior Inferotemporal Ventral Area in Macaque Monkeys , 1997, The Journal of Neuroscience.

[40]  W. Brown,et al.  Bilateral field interactions, hemispheric specialization and evoked potential interhemispheric transmission time , 1997, Neuropsychologia.

[41]  A. Nowicka,et al.  VISUAL-SPATIAL-FREQUENCY MODEL OF CEREBRAL ASYMMETRY : A CRITICAL SURVEY OF BEHAVIORAL AND ELECTROPHYSIOLOGICAL STUDIES , 1996 .

[42]  S. Molotchnikoff,et al.  Stimulus-dependent oscillations in the cat visual cortex: differences between bar and grating stimuli , 1996, Brain Research.

[43]  M A Goodale,et al.  Visuomotor modules in the vertebrate brain. , 1996, Canadian journal of physiology and pharmacology.

[44]  A. Nowicka,et al.  Interhemispheric transmission of information and functional asymmetry of the human brain , 1996, Neuropsychologia.

[45]  Shozo Tobimatsu,et al.  Parvocellular and magnocellular contributions to visual evoked potentials in humans: stimulation with chromatic and achromatic gratings and apparent motion , 1995, Journal of the Neurological Sciences.

[46]  J Bullier,et al.  Structural basis of cortical synchronization. II. Effects of cortical lesions. , 1995, Journal of neurophysiology.

[47]  Giorgio M. Innocenti,et al.  Cellular aspects of callosal connections and their development , 1995, Neuropsychologia.

[48]  M Iacoboni,et al.  Channels of the corpus callosum. Evidence from simple reaction times to lateralized flashes in the normal and the split brain. , 1995, Brain : a journal of neurology.

[49]  J. Bullier,et al.  Visual latencies in areas V1 and V2 of the macaque monkey , 1995, Visual Neuroscience.

[50]  B. Payne Neuronal interactions in cat visual cortex mediated by the corpus callosum , 1994, Behavioural Brain Research.

[51]  Giorgio M. Innocenti,et al.  Some new trends in the study of the corpus callosum , 1994, Behavioural Brain Research.

[52]  M. Hoptman,et al.  How and why do the two cerebral hemispheres interact? , 1994, Psychological bulletin.

[53]  M. Jeeves,et al.  Directional asymmetries in interhemispheric transmission time: Evidence from visual evoked potentials , 1994, Neuropsychologia.

[54]  S Noachtar,et al.  Pattern visual evoked potentials recorded from human occipital cortex with chronic subdural electrodes. , 1993, Electroencephalography and clinical neurophysiology.

[55]  Minami Ito,et al.  Columns for visual features of objects in monkey inferotemporal cortex , 1992, Nature.

[56]  M. Steriade,et al.  Voltage-dependent fast (20–40 Hz) oscillations in long-axoned neocortical neurons , 1992, Neuroscience.

[57]  John H. R. Maunsell,et al.  Visual response latencies in striate cortex of the macaque monkey. , 1992, Journal of neurophysiology.

[58]  P A Salin,et al.  Response selectivity of neurons in area MT of the macaque monkey during reversible inactivation of area V1. , 1992, Journal of neurophysiology.

[59]  R. Nicoletti,et al.  Is interhemispheric transfer of visuomotor information asymmetric? Evidence from a meta-analysis , 1991, Neuropsychologia.

[60]  W. Singer,et al.  Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex , 1991, Science.

[61]  R. Davidson,et al.  Reaction time measures of interhemispheric transfer time in reading disabled and normal children , 1990, Neuropsychologia.

[62]  E. Serafetinides,et al.  Schizophrenia, corpus callosum, and interhemispheric communication: A review , 1990, Psychiatry Research.

[63]  T. Nealey,et al.  Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[64]  P. Rakić,et al.  Cytological and quantitative characteristics of four cerebral commissures in the rhesus monkey , 1990, The Journal of comparative neurology.

[65]  R. Davidson,et al.  Visual evoked potential measures of interhemispheric transfer time in humans. , 1989, Behavioral neuroscience.

[66]  A. Fiorentini,et al.  Functional dissociation of the hemispheres in the discrimination of complex gratings near the vertical meridian , 1988, Vision Research.

[67]  J. Polich,et al.  Hemispheric differences for visual evoked potentials from checkerboard stimuli , 1988, Neuropsychologia.

[68]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. I. Ocular dominance, binocular interactions, and baseline conditions , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  DH Hubel,et al.  Psychophysical evidence for separate channels for the perception of form, color, movement, and depth , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[70]  V. Swayze,et al.  Two Hemispheres—One Brain: Functions of the Corpus Callosum , 1987 .

[71]  L. J. Chapman,et al.  The measurement of handedness , 1987, Brain and Cognition.

[72]  D. Jeffreys,et al.  The influence of spatial frequency on the reaction times and evoked potentials recorded to grating pattern stimuli , 1985, Vision Research.

[73]  A. Milner,et al.  Visual evoked potentials to lateralised stimuli in two cases of callosal agenesis. , 1985, Journal of neurology, neurosurgery, and psychiatry.

[74]  N. Cook,et al.  Callosal inhibition: the key to the brain code. , 1984, Behavioral science.

[75]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[76]  T. Bashore,et al.  Vocal and manual reaction time estimates of interhemispheric transmission time. , 1981, Psychological bulletin.

[77]  P. Lennie Parallel visual pathways: A review , 1980, Vision Research.

[78]  A. Vassilev,et al.  On the latency of human visually evoked response to sinusoidal gratings , 1979, Vision Research.

[79]  W. Singer,et al.  Excitatory synaptic ensemble properties in the visual cortex of the macaque monkey: A current source density analysis of electrically evoked potentials , 1979, The Journal of comparative neurology.

[80]  D. Tolhurst Separate channels for the analysis of the shape and the movement of a moving visual stimulus , 1973, The Journal of physiology.

[81]  H Ikeda,et al.  Receptive field organization of ‘sustained’ and ‘transient’ retinal ganglion cells which subserve different functional roles , 1972, The Journal of physiology.

[82]  M. D. Rugg,et al.  The effect of stimulus intensity on visual evoked potential estimates of interhemispheric transmission time , 2004, Experimental Brain Research.

[83]  F. Aboitiz,et al.  Long distance communication in the human brain: timing constraints for inter-hemispheric synchrony and the origin of brain lateralization. , 2003, Biological research.

[84]  S. M. Williams,et al.  Central Visual Pathways , 2001 .

[85]  Jean Bullier,et al.  The Timing of Information Transfer in the Visual System , 1997 .

[86]  Nicoletta Berardi,et al.  Chapter 3 - Interhemispheric Transfer of Spatial and Temporal Frequency Information. , 1997 .

[87]  M. Silverman,et al.  Spatial-frequency organization in primate striate cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.