Asymptotics of multivariate sequences IV: generating functions with poles on a hyperplane arrangement

Let F ( z 1 , . . . , z d ) be the quotient of an analytic function with a product of linear functions. Working in the framework of analytic combinatorics in several variables, we compute asymptotic formulae for the Taylor coefficients of F using multivariate residues and saddle-point approximations. Because the singular set of F is the union of hyperplanes, we are able to make explicit the topological decompositions which arise in the multivariate singularity analysis. In addition to effective and explicit asymptotic results, we study how asymptotics change between different regimes, and report on an accompanying computer algebra package implementing our results. It is also our hope that this paper will serve as an entry to the more advanced corners of analytic combinatorics in several variables for combinatorialists.

[1]  R. Pemantle,et al.  Stationary Points at Infinity for Analytic Combinatorics , 2021, Foundations of Computational Mathematics.

[2]  Stephen Melczer,et al.  Effective Coefficient Asymptotics of Multivariate Rational Functions via Semi-Numerical Algorithms for Polynomial Systems , 2019, J. Symb. Comput..

[3]  Stephen Melczer,et al.  Asymptotics of multivariate sequences in the presence of a lacuna , 2019, Annales de l’Institut Henri Poincaré D.

[4]  Marc Mezzarobba,et al.  Rigorous Multiple-Precision Evaluation of D-Finite Functions in SageMath , 2016, ArXiv.

[5]  Pierre Lairez,et al.  Computing periods of rational integrals , 2014, Math. Comput..

[6]  Frank Wannemaker,et al.  Arrangements Of Hyperplanes , 2016 .

[7]  Mark C. Wilson,et al.  Analytic Combinatorics in Several Variables , 2013 .

[8]  R. Pemantle,et al.  Automatic asymptotics for coefficients of smooth, bivariate rational functions , 2011, 1108.1209.

[9]  Mark C. Wilson,et al.  Asymptotics of coefficients of multivariate generating functions: improvements for multiple points , 2010 .

[10]  Marc Mezzarobba,et al.  NumGfun: a package for numerical and analytic computation with D-finite functions , 2010, ISSAC.

[11]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[12]  Yuliy Baryshnikov,et al.  Asymptotics of multivariate sequences, part III: Quadratic points , 2008 .

[13]  M. Lladser Uniform Formulae for Coefficients of Meromorphic Functions in Two Variables. Part I , 2006, SIAM J. Discret. Math..

[14]  Mark C. Wilson,et al.  Asymptotics of Multivariate Sequences II: Multiple Points of the Singular Variety , 2004, Combinatorics, Probability and Computing.

[15]  A. Zvonkin,et al.  Graphs on Surfaces and Their Applications , 2003 .

[16]  Howard J. Karloff,et al.  On the fractal behavior of TCP , 2003, STOC '03.

[17]  Jesús A. De Loera,et al.  Algebraic unimodular counting , 2001, Math. Program..

[18]  Mark C. Wilson,et al.  Asymptotics of Multivariate Sequences: I. Smooth Points of the Singular Variety , 2002, J. Comb. Theory, Ser. A.

[19]  Joris van der Hoeven,et al.  Fast Evaluation of Holonomic Functions Near and in Regular Singularities , 2001, J. Symb. Comput..

[20]  Robin Pemantle,et al.  Generating functions with high-order poles are nearly polynomial , 2000 .

[21]  Edward A. Bender,et al.  Multivariate Asymptotics for Products of Large Powers with Applications to Lagrange Inversion , 1999, Electron. J. Comb..

[22]  Hsien-Kuei Hwang,et al.  LARGE DEVIATIONS OF COMBINATORIAL DISTRIBUTIONS II. LOCAL LIMIT THEOREMS , 1998 .

[23]  A. Odlyzko Asymptotic enumeration methods , 1996 .

[24]  P. Orlik,et al.  Commutative algebras for arrangements , 1994, Nagoya Mathematical Journal.

[25]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[26]  Andrea L. Bertozzi,et al.  Multidimensional Residues, Generating Functions, and Their Application to Queueing Networks , 1993, SIAM Rev..

[27]  Zhicheng Gao,et al.  Central and local limit theorems applied to asymptotic enumeration IV: multivariate generating functions , 1992 .

[28]  L. Hörmander Distribution theory and Fourier analysis , 1990 .

[29]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[30]  L. Lipshitz,et al.  The diagonal of a D-finite power series is D-finite , 1988 .

[31]  M. Goresky,et al.  Stratified Morse theory , 1988 .

[32]  Edward A. Bender,et al.  Central and Local Limit Theorems Applied to Asymptotic Enumeration II: Multivariate Generating Functions , 1983, J. Comb. Theory, Ser. A.

[33]  Gilles Christol,et al.  Diagonales de fractions rationnelles et équations différentielles , 1983 .

[34]  P. Orlik,et al.  Combinatorics and topology of complements of hyperplanes , 1980 .

[35]  T. Brylawski The broken-circuit complex , 1977 .

[36]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[37]  Edward A. Bender,et al.  Central and Local Limit Theorems Applied to Asymptotic Enumeration , 1973, J. Comb. Theory A.

[38]  M. Atiyah,et al.  Lacunas for hyperbolic differential operators with constant coefficients I , 1970 .