Static Output Feedback Control for Nonlinear Systems subject to Parametric and Nonlinear Uncertainties

This work addresses the design of static output feedback control of discrete-time nonlinear systems satisfying a local Lipschitz continuity condition with time-varying uncertainties. The controller has also a guaranteed disturbance attenuation level (Hinfty performance). Thanks to the linearity of the proposed LMIs in both the admissible Lipschitz constant of the system and the disturbance attenuation level, they can be simultaneously optimized through convex multiobjective optimization. The optimization over Lipschitz constant adds an extra important and new feature to the controller, robustness against nonlinear uncertainty. The resulting controller is robust against both nonlinear additive uncertainty and time-varying parametric uncertainties. Explicit norm-wise and element-wise bounds on the tolerable nonlinear uncertainty are derived.

[1]  A. T. Neto,et al.  Stabilization via static output feedback , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[2]  H.J. Marquez,et al.  A Robust Observer Design Method for Continuous-Time Lipschitz Nonlinear Systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[3]  H.J. Marquez,et al.  LMI optimization approach to robust H∞ filtering for discrete-time nonlinear uncertain systems , 2008, 2008 American Control Conference.

[4]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[5]  Carlos E. de Souza,et al.  A necessary and sufficient condition for output feedback stabilizability , 1995, Autom..

[6]  Chun-Hsiung Fang,et al.  Robust H∞ fuzzy static output feedback control of T-S fuzzy systems with parametric uncertainties , 2007, Fuzzy Sets Syst..

[7]  Chaouki T. Abdallah,et al.  Static output feedback: a survey , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[8]  Robert Orsi,et al.  Generalized pole placement via static output feedback: A methodology based on projections , 2006, Autom..

[9]  G. Papavassilopoulos,et al.  Bilinearity and complementarity in robust control , 1999 .

[10]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[11]  James Lam,et al.  Static Output Feedback Stabilization: An ILMI Approach , 1998, Autom..

[12]  Guang-Hong Yang,et al.  Robust static output feedback control synthesis for linear continuous systems with polytopic uncertainties , 2013, Autom..

[13]  Masoud Abbaszadeh,et al.  Robust Hinfinity observer design for sampled-data Lipschitz nonlinear systems with exact and Euler approximate models , 2008, Autom..

[14]  Masoud Abbaszadeh,et al.  Robust H∞ Filtering for Lipschitz Nonlinear Systems via Multiobjective Optimization , 2010, J. Signal Inf. Process..

[15]  Lihua Xie,et al.  Robust control of a class of uncertain nonlinear systems , 1992 .

[16]  M. Abbaszadeh,et al.  Nonlinear observer design for one-sided Lipschitz systems , 2010, Proceedings of the 2010 American Control Conference.

[17]  P. Khargonekar,et al.  Robust stabilization of uncertain linear systems: quadratic stabilizability and H/sup infinity / control theory , 1990 .

[18]  Hamid Reza Karimi,et al.  Robust static output-feedback controller design against sensor failure for vehicle dynamics , 2014 .

[19]  Hamid Reza Karimi,et al.  Static output-feedback control under information structure constraints , 2013, Autom..

[20]  L. Ghaoui,et al.  A cone complementarity linearization algorithm for static output-feedback and related problems , 1997, IEEE Trans. Autom. Control..

[21]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[22]  Giuseppe Franzè,et al.  Eigenvalue assignment with optimal spectral conditioning by static output feedback , 2005 .

[23]  H. Marquez Nonlinear Control Systems: Analysis and Design , 2003, IEEE Transactions on Automatic Control.

[24]  Mohamed Boutayeb,et al.  Static output feedback stabilization with H/sub /spl infin// performance for linear discrete-time systems , 2005, IEEE Transactions on Automatic Control.

[25]  M. Abbaszadeh,et al.  Robust H∞ observer design for sampled-data Lipschitz nonlinear systems with exact and Euler approximate models! , 2008 .

[26]  Robert E. Skelton,et al.  Static output feedback controllers: stability and convexity , 1998, IEEE Trans. Autom. Control..

[27]  R. Skelton,et al.  Linear quadratic suboptimal control with static output feedback , 1994 .

[28]  Jianbin Qiu,et al.  Fuzzy-Model-Based Piecewise ${\mathscr H}_{\infty }$ Static-Output-Feedback Controller Design for Networked Nonlinear Systems , 2010, IEEE Transactions on Fuzzy Systems.

[29]  Germain Garcia,et al.  Stabilization of discrete time linear systems by static output feedback , 2001, IEEE Trans. Autom. Control..

[30]  Huijun Gao,et al.  A Heuristic Approach to Static Output-Feedback Controller Synthesis With Restricted Frequency-Domain Specifications , 2014, IEEE Transactions on Automatic Control.

[31]  O. Toker,et al.  On the NP-hardness of solving bilinear matrix inequalities and simultaneous stabilization with static output feedback , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[32]  Masoud Abbaszadeh,et al.  Dynamical robust H∞ filtering for nonlinear uncertain systems: An LMI approach , 2010, J. Frankl. Inst..

[33]  Didier Henrion,et al.  Convergent relaxations of polynomial matrix inequalities and static output feedback , 2006, IEEE Transactions on Automatic Control.

[34]  Masoud Abbaszadeh,et al.  A generalized framework for robust nonlinear Hinfinity filtering of Lipschitz descriptor systems with parametric and nonlinear uncertainties , 2012, Autom..

[35]  H.J. Marquez,et al.  Robust H Observer Design for a Class of Nonlinear Uncertain Systems via Convex Optimization , 2007, 2007 American Control Conference.

[36]  Atsushi Fujimori Optimization of static output feedback using substitutive LMI formulation , 2004, IEEE Transactions on Automatic Control.