The finite element square reduced (FE2R) method with GPU acceleration: towards three‐dimensional two‐scale simulations

The FE2 method is a renown computational multiscale simulation technique for solid materials with fine-scale microstructure. It allows for the accurate prediction of the mechanical behavior of structures made of heterogeneous materials with nonlinear material behavior. However, the FE2 method leads to excessive CPU time and storage requirements, even for academic two-dimensional problems. In order to allow for realistic three-dimensional two-scale simulations, a significant reduction of the CPU and memory usage is required. For this purpose, the authors have recently proposed a reduced basis homogenization scheme based on a mixed incremental variational principle. The approach exploits the potential structure of generalized standard materials. Thereby, important speed-ups and memory savings can be achieved. Using high-performance GPUs, the reduced-basis method can be further accelerated. In the present contribution, our previous works are combined and extended to form the FE2-reduced method: the FE2R. The FE2R can be used to simulate three-dimensional structural problems with consideration of the nonlinearity and microstructure of the underlying material at acceptable computational cost. Thereby, it allows for a new level of complexity in nonlinear multiscale simulations. Numerical examples illustrate the capabilities of the chosen approach. Copyright (c) 2016 John Wiley & Sons, Ltd.

[1]  Pierre Suquet,et al.  Computational analysis of nonlinear composite structures using the Nonuniform Transformation Field Analysis , 2004 .

[2]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[3]  F. Fritzen,et al.  Nonlinear reduced order homogenization of materials including cohesive interfaces , 2015 .

[4]  Jan Novák,et al.  Accelerating a FFT-based solver for numerical homogenization of periodic media by conjugate gradients , 2010, J. Comput. Phys..

[5]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[6]  Tarek I. Zohdi,et al.  A numerical method for homogenization in non-linear elasticity , 2007 .

[7]  Laurent Stainier,et al.  Study and validation of a variational theory of thermo-mechanical coupling in finite visco-plasticity , 2010 .

[8]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[9]  Philip Eisenlohr,et al.  An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials , 2012 .

[10]  Daniel Balzani,et al.  Construction of two- and three-dimensional statistically similar RVEs for coupled micro-macro simulations , 2014 .

[11]  Thomas Böhlke,et al.  Computational homogenization of elasto-plastic porous metals , 2012 .

[12]  Frédéric Feyel,et al.  Multiscale FE2 elastoviscoplastic analysis of composite structures , 1999 .

[13]  M. Schneider,et al.  Efficient fixed point and Newton–Krylov solvers for FFT-based homogenization of elasticity at large deformations , 2014 .

[14]  Pierre Suquet,et al.  Extension of the Nonuniform Transformation Field Analysis to linear viscoelastic composites in the presence of aging and swelling , 2014 .

[15]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[16]  Thomas Böhlke,et al.  Nonuniform transformation field analysis of materials with morphological anisotropy , 2011 .

[17]  R. Lebensohn N-site modeling of a 3D viscoplastic polycrystal using Fast Fourier Transform , 2001 .

[18]  G. J. Dvorak,et al.  Implementation of the transformation field analysis for inelastic composite materials , 1994 .

[19]  Steven G. Johnson,et al.  A Modified Split-Radix FFT With Fewer Arithmetic Operations , 2007, IEEE Transactions on Signal Processing.

[20]  David Ryckelynck Hyper‐reduction of mechanical models involving internal variables , 2009 .

[21]  Siep Weiland,et al.  Missing Point Estimation in Models Described by Proper Orthogonal Decomposition , 2004, IEEE Transactions on Automatic Control.

[22]  J. Chaboche,et al.  FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials , 2000 .

[23]  Pierre Suquet,et al.  Nonuniform transformation field analysis of elastic–viscoplastic composites , 2009 .

[24]  Hervé Moulinec,et al.  A computational scheme for linear and non‐linear composites with arbitrary phase contrast , 2001 .

[25]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[26]  Julien Yvonnet,et al.  The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains , 2007, J. Comput. Phys..

[27]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[28]  A. Rollett,et al.  Modeling the viscoplastic micromechanical response of two-phase materials using Fast Fourier Transforms , 2011 .

[29]  Pedro Ponte Castañeda The effective mechanical properties of nonlinear isotropic composites , 1991 .

[30]  M. Gurtin,et al.  Thermodynamics with Internal State Variables , 1967 .

[31]  Thomas Böhlke,et al.  Reduced basis homogenization of viscoelastic composites , 2013 .

[32]  Thomas Böhlke,et al.  Three‐dimensional finite element implementation of the nonuniform transformation field analysis , 2010 .

[33]  M. Diehl,et al.  A spectral method solution to crystal elasto-viscoplasticity at finite strains , 2013 .

[34]  Pierre Suquet,et al.  On the effective behavior of nonlinear inelastic composites: I. Incremental variational principles , 2007 .

[35]  P. Germain,et al.  The Method of Virtual Power in Continuum Mechanics. Part 2: Microstructure , 1973 .

[36]  M. Ortiz,et al.  A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids , 2006 .

[37]  Djordje Peric,et al.  On a class of constitutive equations in viscoplasticity : formulation and computational issues , 1993 .

[38]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[39]  Hervé Moulinec,et al.  A numerical method for computing the overall response of nonlinear composites with complex microstructure , 1998, ArXiv.

[40]  Felix Fritzen,et al.  GPU accelerated computational homogenization based on a variational approach in a reduced basis framework , 2014 .

[41]  Pedro Ponte Castañeda Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: I—theory , 2002 .

[42]  Christian Miehe,et al.  Strain‐driven homogenization of inelastic microstructures and composites based on an incremental variational formulation , 2002 .

[43]  R. Müller,et al.  A multiscale approach for modeling progressive damage of composite materials using fast Fourier transforms , 2014 .

[44]  Julien Yvonnet,et al.  Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials , 2009 .

[45]  Jian-Fu Shao,et al.  A micromechanical analysis of elastoplastic behavior of porous materials , 2011 .

[46]  Francisco Chinesta,et al.  Recent Advances and New Challenges in the Use of the Proper Generalized Decomposition for Solving Multidimensional Models , 2010 .

[47]  T. Böhlke,et al.  Nonlinear homogenization using the nonuniform transformation field analysis , 2011 .

[48]  J. Michel,et al.  Nonuniform transformation field analysis , 2003 .

[49]  Christian Soize,et al.  Computational nonlinear stochastic homogenization using a nonconcurrent multiscale approach for hyperelastic heterogeneous microstructures analysis , 2012, International Journal for Numerical Methods in Engineering.

[50]  Ricardo A. Lebensohn,et al.  Simulation of micromechanical behavior of polycrystals: finite elements versus fast Fourier transforms , 2009 .

[51]  Matti Schneider,et al.  Use of composite voxels in FFT-based homogenization , 2015 .

[52]  Felix Fritzen,et al.  Reduced basis hybrid computational homogenization based on a mixed incremental formulation , 2013 .

[53]  Quoc Son Nguyen,et al.  Sur les matériaux standard généralisés , 1975 .

[54]  M. Ortiz,et al.  The variational formulation of viscoplastic constitutive updates , 1999 .

[55]  Pierre Suquet,et al.  On the effective behavior of nonlinear inelastic composites: II: A second-order procedure , 2007 .