Identification of the delay parameter for nonlinear time-delay systems with unknown inputs

Using the theory of non-commutative rings, this paper studies the delay identification of nonlinear time-delay systems with unknown inputs. A sufficient condition is given in order to deduce an output delay equation from the studied system. Then necessary and sufficient conditions are proposed to judge whether the deduced output delay equation can be used to identify delay involved in this equation. Two different cases are discussed for the dependent and independent outputs, respectively. The presented result is applied to identify delay in a biological system.

[1]  Toshiki Oguchi,et al.  Input-output linearization of retarded non-linear systems by using an extension of Lie derivative , 2002 .

[2]  Xuemei Ren,et al.  Online identification of continuous-time systems with unknown time delay , 2005, IEEE Transactions on Automatic Control.

[3]  M. Darouach,et al.  Full-order observers for linear systems with unknown inputs , 1994, IEEE Trans. Autom. Control..

[4]  Driss Boutat,et al.  On Observation of Time-Delay Systems With Unknown Inputs , 2011, IEEE Transactions on Automatic Control.

[5]  R. W. Wilde,et al.  Observers for linear systems with unknown inputs , 1988 .

[6]  Kolmanovskii,et al.  Introduction to the Theory and Applications of Functional Differential Equations , 1999 .

[7]  Xiaohua Xia,et al.  Analysis of nonlinear time-delay systems using modules over non-commutative rings , 2002, Autom..

[8]  Claude H. Moog,et al.  Extended Lie Brackets for Nonlinear Time-Delay Systems , 2011, IEEE Transactions on Automatic Control.

[9]  Lotfi Belkoura,et al.  Identifiabilty of systems described by convolution equations , 2005, Autom..

[10]  A. Krener $({\text{Ad}}_{f,g} )$, $({\text{ad}}_{f,g} )$ and Locally $({\text{ad}}_{f,g} )$ Invariant and Controllability Distributions , 1985 .

[11]  Jean-Pierre Richard,et al.  Time-delay systems: an overview of some recent advances and open problems , 2003, Autom..

[12]  Sergey V. Drakunov,et al.  Delay identification in time-delay systems using variable structure observers , 2006, Annu. Rev. Control..

[13]  D. Koenig,et al.  Unknown Input Observers Design for Time-Delay Systems Application to An Open-Channel , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[14]  Michel Fliess,et al.  Parameters estimation of systems with delayed and structured entries , 2009, Autom..

[15]  Jean-Pierre Richard,et al.  Sliding-Mode Control of Retarded Nonlinear Systems Via Finite Spectrum Assignment Approach , 2006, IEEE Transactions on Automatic Control.

[16]  M. Fliess,et al.  Reconstructeurs d'état , 2004 .

[17]  Ursula Klingmüller,et al.  Modeling the Nonlinear Dynamics of Cellular Signal Transduction , 2004, Int. J. Bifurc. Chaos.

[18]  Jan Jezek Rings of skew polynomials in algebraical approach to control theory , 1996, Kybernetika.

[19]  Alfredo Germani,et al.  A new approach to state observation of nonlinear systems with delayed output , 2002, IEEE Trans. Autom. Control..

[20]  A. Isidori Nonlinear Control Systems , 1985 .

[21]  Alfredo Germani,et al.  An asymptotic state observer for a class of nonlinear delay systems , 2001, Kybernetika.

[22]  Bernt Wennberg,et al.  State elimination and identifiability of the delay parameter for nonlinear time-delay systems , 2008, Autom..

[23]  Martín Velasco-Villa,et al.  The disturbance decoupling problem for time-delay nonlinear systems , 2000, IEEE Trans. Autom. Control..

[24]  T. Floquet,et al.  Delay Estimation Algorithm for Nonlinear Time-Delay Systems with Unknown Inputs , 2012, TDS.

[25]  Olivier Sename Unknown input robust observers for time-delay systems , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.