A Strong Cutting Plane/Branch-and-Bound Algorithm for Node Packing

We present a strong cutting plane/branch-and-bound algorithm for node packing. The cutting planes are obtained from cliques and lifting odd hole inequalities. Computational results are reported.

[1]  Manfred W. Padberg,et al.  On the facial structure of set packing polyhedra , 1973, Math. Program..

[2]  Leslie E. Trotter,et al.  A class of facet producing graphs for vertex packing polyhedra , 1975, Discret. Math..

[3]  Leslie E. Trotter,et al.  Vertex packings: Structural properties and algorithms , 1975, Math. Program..

[4]  V. Chvátal On certain polytopes associated with graphs , 1975 .

[5]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[6]  George J. Minty,et al.  On maximal independent sets of vertices in claw-free graphs , 1980, J. Comb. Theory B.

[7]  Roy E. Marsten,et al.  The Design of the XMP Linear Programming Library , 1981, TOMS.

[8]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[9]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[10]  L. Lovász,et al.  Polynomial Algorithms for Perfect Graphs , 1984 .

[11]  Gérard Cornuéjols,et al.  Compositions for perfect graphs , 1985, Discret. Math..

[12]  M. Padberg,et al.  Lp-based combinatorial problem solving , 1985 .

[13]  William R. Pulleyblank,et al.  Random near-regular graphs and the node packing problem , 1985 .

[14]  Egon Balas,et al.  On the Maximum Weight Clique Problem , 1987, Math. Oper. Res..

[15]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[16]  Thomas L. Morin,et al.  Fixed Order Branch-and-Bound Methods for Mixed-Integer Programming: The ZOOM System , 1989, INFORMS J. Comput..