Efficient inversion of the Galerkin matrix of general second-order elliptic operators with nonsmooth coefficients

This article deals with the efficient (approximate) inversion of finite element stiffness matrices of general second-order elliptic operators with L∞-coefficients. It will be shown that the inverse stiffness matrix can be approximated by hierarchical matrices (H-matrices). Furthermore, numerical results will demonstrate that it is possible to compute an approximate inverse with almost linear complexity.

[1]  Lars Grasedyck,et al.  Theorie und Anwendungen Hierarchischer Matrizen , 2006 .

[2]  M. Bebendorf A Note on the Poincaré Inequality for Convex Domains , 2003 .

[3]  Mario Bebendorf,et al.  Approximation of boundary element matrices , 2000, Numerische Mathematik.

[4]  W. Hackbusch,et al.  Numerische Mathematik Existence of H-matrix approximants to the inverse FE-matrix of elliptic operators with L ∞-coefficients , 2002 .

[5]  Wolfgang Dahmen,et al.  Wavelet approximation methods for pseudodifferential equations II: Matrix compression and fast solution , 1993, Adv. Comput. Math..

[6]  L. Greengard,et al.  A new version of the Fast Multipole Method for the Laplace equation in three dimensions , 1997, Acta Numerica.

[7]  Mario Bebendorf,et al.  Effiziente numerische Lösung von Randintegralgleichungen unter Verwendung von Niedrigrang-Matrizen , 2001 .

[8]  W. Hackbusch Elliptic Differential Equations , 1992 .

[9]  Wolfgang Hackbusch,et al.  Theorie und Numerik elliptischer Differentialgleichungen , 1986, Teubner Studienbücher.

[10]  E. Tyrtyshnikov Mosaic-Skeleton approximations , 1996 .

[11]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[12]  Boris N. Khoromskij,et al.  A Sparse H-Matrix Arithmetic. Part II: Application to Multi-Dimensional Problems , 2000, Computing.

[13]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[14]  Michael Grüter,et al.  The Green function for uniformly elliptic equations , 1982 .

[15]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[16]  W. Hackbusch,et al.  A Sparse ℋ-Matrix Arithmetic. , 2000, Computing.

[17]  W. Hackbusch A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.

[18]  Sergej Rjasanow,et al.  Adaptive Low-Rank Approximation of Collocation Matrices , 2003, Computing.

[19]  W. Hackbusch,et al.  On the fast matrix multiplication in the boundary element method by panel clustering , 1989 .

[20]  S. Müller,et al.  Estimates for Green's matrices of elliptic systems byLp theory , 1995 .

[21]  B. Silbermann,et al.  Numerical Analysis for Integral and Related Operator Equations , 1991 .

[22]  Wolfgang Dahmen,et al.  Wavelet approximation methods for pseudodifferential equations: I Stability and convergence , 1994 .

[23]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .