A Rank-1 Sketch for Matrix Multiplicative Weights

We show that a simple randomized sketch of the matrix multiplicative weight (MMW) update enjoys (in expectation) the same regret bounds as MMW, up to a small constant factor. Unlike MMW, where every step requires full matrix exponentiation, our steps require only a single product of the form $e^A b$, which the Lanczos method approximates efficiently. Our key technique is to view the sketch as a $\textit{randomized mirror projection}$, and perform mirror descent analysis on the $\textit{expected projection}$. Our sketch solves the online eigenvector problem, improving the best known complexity bounds by $\Omega(\log^5 n)$. We also apply this sketch to semidefinite programming in saddle-point form, yielding a simple primal-dual scheme with guarantees matching the best in the literature.

[1]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[2]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[3]  Kazuoki Azuma WEIGHTED SUMS OF CERTAIN DEPENDENT RANDOM VARIABLES , 1967 .

[4]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[5]  L. Knizhnerman,et al.  Error bounds in the simple Lanczos procedure for computing functions of symmetric matrices and eigenvalues , 1992 .

[6]  Y. Saad Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .

[7]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[8]  Vladimir Druskin,et al.  Krylov subspace approximation of eigenpairs and matrix functions in exact and computer arithmetic , 1995, Numer. Linear Algebra Appl..

[9]  Stanley C. Eisenstat,et al.  A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenproblem , 1995, SIAM J. Matrix Anal. Appl..

[10]  Adrian S. Lewis,et al.  Convex Analysis on the Hermitian Matrices , 1996, SIAM J. Optim..

[11]  Horst Alzer,et al.  On some inequalities for the gamma and psi functions , 1997, Math. Comput..

[12]  Victor Y. Pan,et al.  The complexity of the matrix eigenproblem , 1999, STOC '99.

[13]  Adrian S. Lewis,et al.  Twice Differentiable Spectral Functions , 2001, SIAM J. Matrix Anal. Appl..

[14]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[15]  Santosh S. Vempala,et al.  Efficient algorithms for online decision problems , 2005, J. Comput. Syst. Sci..

[16]  Arkadi Nemirovski,et al.  Prox-Method with Rate of Convergence O(1/t) for Variational Inequalities with Lipschitz Continuous Monotone Operators and Smooth Convex-Concave Saddle Point Problems , 2004, SIAM J. Optim..

[17]  Claudio Gentile,et al.  On the generalization ability of on-line learning algorithms , 2001, IEEE Transactions on Information Theory.

[18]  Gunnar Rätsch,et al.  Matrix Exponentiated Gradient Updates for On-line Learning and Bregman Projection , 2004, J. Mach. Learn. Res..

[19]  G. Meurant The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite Precision Computations , 2006 .

[20]  Sanjeev Arora,et al.  A combinatorial, primal-dual approach to semidefinite programs , 2007, STOC.

[21]  Yurii Nesterov,et al.  Smoothing Technique and its Applications in Semidefinite Optimization , 2004, Math. Program..

[22]  Alexandre d'Aspremont,et al.  Subsampling algorithms for semidefinite programming , 2008, 0803.1990.

[23]  Manfred K. Warmuth,et al.  Randomized Online PCA Algorithms with Regret Bounds that are Logarithmic in the Dimension , 2008 .

[24]  Yurii Nesterov,et al.  Primal-dual subgradient methods for convex problems , 2005, Math. Program..

[25]  Alexander Shapiro,et al.  Stochastic Approximation approach to Stochastic Programming , 2013 .

[26]  M. Hochbruck,et al.  Exponential integrators , 2010, Acta Numerica.

[27]  Manfred K. Warmuth,et al.  Online variance minimization , 2011, Machine Learning.

[28]  Richard Peng,et al.  Faster and simpler width-independent parallel algorithms for positive semidefinite programming , 2012, SPAA '12.

[29]  Sébastien Bubeck,et al.  Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems , 2012, Found. Trends Mach. Learn..

[30]  Shai Shalev-Shwartz,et al.  Online Learning and Online Convex Optimization , 2012, Found. Trends Mach. Learn..

[31]  Nisheeth K. Vishnoi,et al.  Approximating the exponential, the lanczos method and an Õ(m)-time spectral algorithm for balanced separator , 2011, STOC '12.

[32]  Sanjeev Arora,et al.  The Multiplicative Weights Update Method: a Meta-Algorithm and Applications , 2012, Theory Comput..

[33]  Arkadi Nemirovski,et al.  A Randomized Mirror-Prox Method for Solving Structured Large-Scale Matrix Saddle-Point Problems , 2011, SIAM J. Optim..

[34]  Jiazhong Nie,et al.  Online PCA with Optimal Regrets , 2013, ALT.

[35]  Li Zhang,et al.  Analyze gauss: optimal bounds for privacy-preserving principal component analysis , 2014, STOC.

[36]  Nisheeth K. Vishnoi,et al.  Faster Algorithms via Approximation Theory , 2014, Found. Trends Theor. Comput. Sci..

[37]  Martin S. Andersen,et al.  Chordal Graphs and Semidefinite Optimization , 2015, Found. Trends Optim..

[38]  Tengyu Ma,et al.  Online Learning of Eigenvectors , 2015, ICML.

[39]  Jakub W. Pachocki,et al.  Geometric median in nearly linear time , 2016, STOC.

[40]  Elad Hazan,et al.  Introduction to Online Convex Optimization , 2016, Found. Trends Optim..

[41]  Elad Hazan,et al.  Sublinear time algorithms for approximate semidefinite programming , 2016, Math. Program..

[42]  Yin Tat Lee,et al.  Using Optimization to Obtain a Width-Independent, Parallel, Simpler, and Faster Positive SDP Solver , 2015, SODA.

[43]  Yuanzhi Li,et al.  Follow the Compressed Leader: Faster Online Learning of Eigenvectors and Faster MMWU , 2017, ICML.

[44]  Aaron Sidford,et al.  Stability of the Lanczos Method for Matrix Function Approximation , 2017, SODA.

[45]  Aaron Sidford,et al.  Efficient Structured Matrix Recovery and Nearly-Linear Time Algorithms for Solving Inverse Symmetric M-Matrices , 2018, ArXiv.