Analysis of autophagy-related genes and associated noncoding RNAs and transcription factors in digestive system tumors.

Aim: To investigate the autophagy-related gene (ATG) expression and the associated noncoding RNAs (ncRNA) and transcription factors (TF) in digestive system tumors (DST). Methods: We systematically investigated the ATG expression in DST by weighted gene correlation network analysis, crosstalk connection, functional analysis and Pivot analysis. Results: ATGs were clustered into six modules with co-expression in DST. Functional analysis revealed that six ATG-related modules were enriched in biological pathways involved in tumorigenesis. Pivot analysis identified key ncRNAs and TFs, which are essential for the pathogenesis, clinical diagnosis and treatment of DST. Conclusion: Our study highlights the crucial roles of ncRNA and TFs in the identification of potential biomarkers or therapeutic targets for DST.

[1]  Dong-Sheng Cao,et al.  HAMdb: a database of human autophagy modulators with specific pathway and disease information , 2018, Journal of Cheminformatics.

[2]  R. Parkesh,et al.  Transcription factors and cognate signalling cascades in the regulation of autophagy , 2016, Biological reviews of the Cambridge Philosophical Society.

[3]  Yue Zhao,et al.  RAID v2.0: an updated resource of RNA-associated interactions across organisms , 2016, Nucleic Acids Res..

[4]  S. Signoretti,et al.  Molecular Subtypes Improve Prognostic Value of International Metastatic Renal Cell Carcinoma Database Consortium Prognostic Model. , 2017, The oncologist.

[5]  Guangchuang Yu,et al.  clusterProfiler: an R package for comparing biological themes among gene clusters. , 2012, Omics : a journal of integrative biology.

[6]  A. Thorburn,et al.  Targeting autophagy in cancer , 2017, Nature Reviews Cancer.

[7]  T. Efferth From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. , 2017, Seminars in cancer biology.

[8]  T. Longacre,et al.  Surgical Pathology of Gastrointestinal Stromal Tumors: Practical Implications of Morphologic and Molecular Heterogeneity for Precision Medicine. , 2017, Advances in anatomic pathology.

[9]  M. Komatsu,et al.  Autophagy-monitoring and autophagy-deficient mice , 2017, Autophagy.

[10]  S. Goruppi,et al.  Nupr1-Aurora Kinase A Pathway Provides Protection against Metabolic Stress-Mediated Autophagic-Associated Cell Death , 2012, Clinical Cancer Research.

[11]  A. Vassilopoulos,et al.  Sirtuins at the crossroads of stemness, aging, and cancer , 2017, Aging cell.

[12]  D. Klionsky,et al.  Atg41/Icy2 regulates autophagosome formation , 2015, Autophagy.

[13]  Yan Chen,et al.  Enhancing anti-tumor efficiency in hepatocellular carcinoma through the autophagy inhibition by miR-375/sorafenib in lipid-coated calcium carbonate nanoparticles. , 2018, Acta biomaterialia.

[14]  C. Antonescu,et al.  Wnt/β-catenin Signaling Contributes to Tumor Malignancy and Is Targetable in Gastrointestinal Stromal Tumor , 2017, Molecular Cancer Therapeutics.

[15]  C. Paraskeva,et al.  Autolysosomal β‐catenin degradation regulates Wnt‐autophagy‐p62 crosstalk , 2012, The EMBO journal.

[16]  A. Lund,et al.  MicroRNA regulation of autophagy. , 2012, Carcinogenesis.

[17]  Xuehao Wang,et al.  miR-101 inhibits autophagy and enhances cisplatin-induced apoptosis in hepatocellular carcinoma cells. , 2013, Oncology reports.

[18]  J. Bruix,et al.  Identification of coding and long non-coding RNAs differentially expressed in tumors and preferentially expressed in healthy tissues. , 2019, Cancer research.

[19]  C. Mitsiades,et al.  Autophagy suppresses Ras-driven epithelial tumourigenesis by limiting the accumulation of reactive oxygen species , 2017, Oncogene.

[20]  A. Jemal,et al.  Global cancer statistics, 2012 , 2015, CA: a cancer journal for clinicians.

[21]  M. F. Troncoso,et al.  Contribution of galectin-1, a glycan-binding protein, to gastrointestinal tumor progression , 2017, World journal of gastroenterology.

[22]  D. Rubinsztein,et al.  Transcriptional regulation of mammalian autophagy at a glance , 2016, Journal of Cell Science.

[23]  Z. Yao,et al.  NUPR1 maintains autolysosomal efflux by activating SNAP25 transcription in cancer cells , 2018, Autophagy.

[24]  Damian Szklarczyk,et al.  The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible , 2016, Nucleic Acids Res..

[25]  Delphine Denoyer,et al.  Targeting copper in cancer therapy: 'Copper That Cancer'. , 2015, Metallomics : integrated biometal science.

[26]  David S. Wishart,et al.  DrugBank 5.0: a major update to the DrugBank database for 2018 , 2017, Nucleic Acids Res..

[27]  Caihong Wang,et al.  SNHG14 enhances gemcitabine resistance by sponging miR-101 to stimulate cell autophagy in pancreatic cancer. , 2019, Biochemical and biophysical research communications.

[28]  Hyojin Kim,et al.  TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions , 2017, Nucleic Acids Res..

[29]  Chang-Peng Wu,et al.  Integrated genomic analysis identifies clinically relevant subtypes of renal clear cell carcinoma , 2018, BMC Cancer.

[30]  D. Rubinsztein,et al.  Autophagy modulation as a potential therapeutic target for diverse diseases , 2012, Nature Reviews Drug Discovery.

[31]  L. Galluzzi,et al.  Regulation of autophagy by stress-responsive transcription factors. , 2013, Seminars in cancer biology.

[32]  W. Gong,et al.  LncRNA HULC triggers autophagy via stabilizing Sirt1 and attenuates the chemosensitivity of HCC cells , 2017, Oncogene.

[33]  Xu Zhang,et al.  Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation , 2010, Nature Cell Biology.

[34]  B. Joseph,et al.  The return of the nucleus: transcriptional and epigenetic control of autophagy , 2013, Nature Reviews Molecular Cell Biology.

[35]  Yan G Zhao,et al.  Core autophagy genes and human diseases. , 2019, Current opinion in cell biology.

[36]  J. Iovanna,et al.  Nupr1: The Swiss‐knife of cancer , 2011, Journal of cellular physiology.

[37]  Y. Li,et al.  MAPK/JNK signalling: a potential autophagy regulation pathway , 2015, Bioscience reports.

[38]  J. Liu,et al.  A facile method for the synthesis of copper-cysteamine nanoparticles and study of ROS production for cancer treatment. , 2019, Journal of materials chemistry. B.

[39]  A. Krogh,et al.  microRNA‐101 is a potent inhibitor of autophagy , 2011, The EMBO journal.

[40]  Rebecca L. Siegel Mph,et al.  Cancer statistics, 2018 , 2018 .

[41]  Hongming Pan,et al.  p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. , 2014, Cancer letters.

[42]  A. Tsung,et al.  miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions. , 2012, Gastroenterology.

[43]  M. Muc-Wierzgoń,et al.  Genes involved in the regulation of different types of autophagy and their participation in cancer pathogenesis , 2018, Oncotarget.

[44]  Xinbing Sui,et al.  Regulation of Autophagy by MiRNAs and Their Emerging Roles in Tumorigenesis and Cancer Treatment. , 2017, International review of cell and molecular biology.

[45]  G. Yen,et al.  Quercetin facilitates cell death and chemosensitivity through RAGE/PI3K/AKT/mTOR axis in human pancreatic cancer cells , 2019, Journal of food and drug analysis.

[46]  Hongchuan Jin,et al.  Long non-coding RNAs involved in autophagy regulation , 2017, Cell Death and Disease.

[47]  Masaaki Komatsu,et al.  Autophagy: Renovation of Cells and Tissues , 2011, Cell.

[48]  Yuquan Wei,et al.  Nanoparticle-delivered quercetin for cancer therapy. , 2014, Anti-cancer agents in medicinal chemistry.

[49]  S. Goruppi,et al.  NUPR1 works against the metabolic stress-induced autophagy-associated cell death in pancreatic cancer cells , 2013, Autophagy.