Three-dimensional RGO/CNTs/GDY assembled microsphere: Bridging-induced electron transport enhanced microwave absorbing mechanism

[1]  R. Che,et al.  Confined Diffusion Strategy for Customizing Magnetic Coupling Spaces to Enhance Low‐frequency Electromagnetic Wave Absorption , 2023, Advanced Functional Materials.

[2]  Lei Wang,et al.  Constructing mixed-dimensional lightweight flexible carbon foam/carbon nanotubes-based heterostructures: An effective strategy to achieve tunable and boosted microwave absorption , 2023, Carbon.

[3]  G. Wu,et al.  Efficient microwave absorption achieved through in situ construction of core-shell CoFe_2O_4@mesoporous carbon hollow spheres , 2023, International Journal of Minerals, Metallurgy and Materials.

[4]  Baoliang Zhang,et al.  Fabrication of Graphdiyne/Graphene Composite Microsphere with Wrinkled Surface via Ultrasonic Spray Compounding and its Microwave Absorption Properties. , 2022, Small.

[5]  Lei Wang,et al.  Hierarchical engineering of CoNi@Air@C/SiO2@Polypyrrole multicomponent nanocubes to improve the dielectric loss capability and magnetic-dielectric synergy , 2022, Journal of Materials Science & Technology.

[6]  X. Qi,et al.  Tunable and improved microwave absorption of flower-like core@shell MFe2O4@MoS2 (M=Mn, Ni and Zn) nanocomposites by defect and interface engineering , 2022, Journal of Materials Science & Technology.

[7]  W. Zhong,et al.  Defect and interface engineering in core@shell structure hollow carbon@MoS2 nanocomposites for boosted microwave absorption performance , 2022, Nano Research.

[8]  Jianxu Ding,et al.  Fabrication of one-dimensional M (Co, Ni)@polyaniline nanochains with adjustable thickness for excellent microwave absorption properties. , 2022, Journal of colloid and interface science.

[9]  W. Zhong,et al.  Magnetic-dielectric synergy and interfacial engineering to design yolk–shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption , 2022, Nano Research.

[10]  Qiuyu Zhang,et al.  Ternary assembled MOF-derived composite: Anisotropic epitaxial growth and microwave absorption , 2022, Composites Part B: Engineering.

[11]  Qiuyu Zhang,et al.  Construction of binary assembled MOF-derived nanocages with dual-band microwave absorbing properties , 2022, Journal of Materials Science & Technology.

[12]  Baoliang Zhang,et al.  Preparation of Three-Dimensional Mo2C/NC@MXene and Its Efficient Electromagnetic Absorption Properties. , 2022, ACS applied materials & interfaces.

[13]  Qiuyu Zhang,et al.  Three-dimensional FeMZn (M=Co or Ni) MOFs: Ions coordinated self-assembling processes and boosting microwave absorption , 2022, Chemical Engineering Journal.

[14]  Jiqi Wang,et al.  Template-free self-assembly of MXene and CoNi-bimetal MOF into intertwined one-dimensional heterostructure and its microwave absorbing properties , 2021 .

[15]  Qiuyu Zhang,et al.  Fabrication of folded MXene/MoS2 composite microspheres with optimal composition and their microwave absorbing properties. , 2021, Journal of colloid and interface science.

[16]  Youwei Du,et al.  Constructing flower-like core@shell MoSe2-based nanocomposites as a novel and high-efficient microwave absorber , 2021 .

[17]  Jiqi Wang,et al.  Three dimensional porous MXene/CNTs microspheres: Preparation, characterization and microwave absorbing properties , 2021 .

[18]  R. Song,et al.  Graphene-based anisotropic polarization meta-filter , 2021 .

[19]  Qiuyu Zhang,et al.  Fabrication of ultralight helical porous carbon fibers with CNTs-confined Ni nanoparticles for enhanced microwave absorption , 2021 .

[20]  Wenjian Zheng,et al.  Hydrangea-like Ni/NiO/C composites derived from metal-organic frameworks with superior microwave absorption , 2021 .

[21]  Qiuyu Zhang,et al.  Biomass-derived 3D magnetic porous carbon fibers with a helical/chiral structure toward superior microwave absorption , 2021 .

[22]  W. Lu,et al.  Improved synergistic effect for achieving ultrathin microwave absorber of 1D Co nanochains/2D carbide MXene nanocomposite , 2021 .

[23]  Zhenjun Wang,et al.  Tunable electromagnetic and broadband microwave absorption of SiO2-coated FeSiAl absorbents , 2020 .

[24]  Jiecai Han,et al.  NiCo2S4 nanosheets on 3D wood-derived carbon for microwave absorption , 2020 .

[25]  Jin Zhang,et al.  Bridging the Gap between Reality and Ideality of Graphdiyne: The Advances of Synthetic Methodology , 2020, Chem.

[26]  Jun Xiang,et al.  CoFe2/BaTiO3 Hybrid Nanofibers for Microwave Absorption , 2020 .

[27]  Lin Guo,et al.  Balancing Dielectric Loss and Magnetic Loss in Fe-NiS2/NiS /PVDF Composites Towards Strong Microwave Reflection Loss. , 2020, ACS applied materials & interfaces.

[28]  L. Wang,et al.  MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption , 2020 .

[29]  Hongbin Ma,et al.  Highly enhanced electromagnetic wave absorption bandwidth based on reduced graphene oxide-Fe aerogel composites , 2019, Nanotechnology.

[30]  Xiaobo Chen,et al.  Recent progress of nanomaterials for microwave absorption , 2019 .

[31]  Shi Tang,et al.  Palladium‐Catalyzed Solvent‐Controlled Selective Synthesis of Acyl Isoureas and Imides from Amides, Isocyanides, Alcohols and Carboxylates , 2019, Advanced Synthesis & Catalysis.

[32]  Zhongfan Liu,et al.  Synthesis of Ultrathin Graphdiyne Film Using a Surface Template. , 2019, ACS applied materials & interfaces.

[33]  Yudong Huang,et al.  Ti3C2Tx MXene/polyaniline (PANI) sandwich intercalation structure composites constructed for microwave absorption , 2019, Composites Science and Technology.

[34]  C. Chen,et al.  Porous Graphene Microflowers for High-Performance Microwave Absorption , 2017, Nano-Micro Letters.

[35]  Zhongfan Liu,et al.  Architecture of β‐Graphdiyne‐Containing Thin Film Using Modified Glaser–Hay Coupling Reaction for Enhanced Photocatalytic Property of TiO2 , 2017, Advanced materials.

[36]  K. Zhou,et al.  In-situ growth of SiC nanowire arrays on carbon fibers and their microwave absorption properties , 2016 .

[37]  Lan-sun Zheng,et al.  MOF-Derived Porous Co/C Nanocomposites with Excellent Electromagnetic Wave Absorption Properties. , 2015, ACS applied materials & interfaces.

[38]  Zhibin Yang,et al.  Cross‐Stacking Aligned Carbon‐Nanotube Films to Tune Microwave Absorption Frequencies and Increase Absorption Intensities , 2014, Advanced materials.

[39]  Wentao Hu,et al.  Microwave absorption properties of multiwalled carbon nanotube/FeNi nanopowders as light-weight microwave absorbers , 2013 .

[40]  R. Swathi,et al.  Rattling motion of alkali metal ions through the cavities of model compounds of graphyne and graphdiyne. , 2013, The journal of physical chemistry. A.

[41]  Xiang‐qian Shen,et al.  Magnetic and microwave absorption properties of electrospun Co0.5Ni0.5Fe2O4 nanofibers , 2012 .

[42]  Chenghua Sun,et al.  Lithium storage on graphdiyne predicted by DFT calculations , 2012 .

[43]  Jiaxin Zheng,et al.  Structural and electronic properties of bilayer and trilayer graphdiyne. , 2012, Nanoscale.

[44]  Victor Rudolph,et al.  Graphdiyne: a versatile nanomaterial for electronics and hydrogen purification. , 2011, Chemical communications.

[45]  Daoben Zhu,et al.  Architecture of graphdiyne nanoscale films. , 2010, Chemical communications.

[46]  M. Cao,et al.  Microwave absorption properties of multiferroic BiFeO3 nanoparticles , 2009 .

[47]  S. Phang,et al.  Microwave absorption behaviors of polyaniline nanocomposites containing TiO2 nanoparticles , 2008 .

[48]  Y. J. Chen,et al.  Microwave absorption properties of the ZnO nanowire-polyester composites , 2004 .

[49]  Xuefeng Yu,et al.  3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption , 2020 .

[50]  Zhongfan Liu,et al.  Robust Superhydrophobic Foam: A Graphdiyne‐Based Hierarchical Architecture for Oil/Water Separation , 2016, Advanced materials.

[51]  G. Cui,et al.  Graphdiyne for High Capacity and Long-Life Lithium Storage , 2015 .

[52]  Renxin Xu,et al.  CoFe2O4/porous carbon nanosheet composites for broadband microwave absorption , 2022 .