A comparison of the pharmacokinetics of perfluorobutanesulfonate (PFBS) in rats, monkeys, and humans.

Materials derived from perfluorobutanesulfonyl fluoride (PBSF, C(4)F(9)SO(2)F) have been introduced as replacements for eight-carbon homolog products that were manufactured from perfluorooctanesulfonyl fluoride (POSF, C(8)F(17)SO(2)F). Perfluorobutanesulfonate (PFBS, C(4)F(9)SO(3)(-)) is a surfactant and potential degradation product of PBSF-derived materials. The purpose of this series of studies was to evaluate the pharmacokinetics of PFBS in rats, monkeys, and humans, thereby providing critical information for human health risk assessment. Studies included: (1) intravenous (i.v.) elimination studies in rats and monkeys; (2) oral uptake and elimination studies in rats; and (3) human serum PFBS elimination in a group of workers with occupational exposure to potassium PFBS (K(+)PFBS). PFBS concentrations were determined in serum (all species), liver (rats), urine (all species), and feces (rats). In rats, the mean terminal serum PFBS elimination half-lives, after i.v. administration of 30mg/kg PFBS, were: males 4.51+/-2.22h (standard error) and females 3.96+/-0.21h. In monkeys, the mean terminal serum PFBS elimination half-lives, after i.v. administration of 10mg/kg PFBS, were: males 95.2+/-27.1h and females 83.2+/-41.9h. Although terminal serum half-lives in male and female rats were similar, without statistical significance, clearance (CL) was significantly greater in female rats (469+/-40mL/h) than male rats (119+/-34mL/h) with the area under the curve (AUC) significantly larger in male rats (294+/-77microg.h/mL) than female rats (65+/-5microg.h/mL). These differences were not observed in male and female monkeys. Volume of distribution estimates suggested distribution was primarily extracellular in both rats and monkeys, regardless of sex, and urine appeared to be a major route of elimination. Among 6 human subjects (5 male, 1 female) followed up to 180 days, the geometric mean serum elimination half-life for PFBS was 25.8 days (95% confidence interval 16.6-40.2). Urine was observed to be a pathway of elimination in the human. Although species-specific differences exist, these findings demonstrate that PFBS is eliminated at a greater rate from human serum than the higher chain homologs of perfluorooctanesulfonate (PFOS) and perfluorohexanesulfonate (PFHxS). Thus, compared to PFOS and PFHxS, PFBS has a much lower potential for accumulation in human serum after repeated occupational, non-occupational (e.g., consumer), or environmental exposures.

[1]  Geary W Olsen,et al.  Comparison of human whole blood, plasma, and serum matrices for the determination of perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and other fluorochemicals. , 2007, Environmental research.

[2]  Andrea Pfahles-Hutchens,et al.  The Applicability of Biomonitoring Data for Perfluorooctanesulfonate to the Environmental Public Health Continuum , 2006, Environmental health perspectives.

[3]  Jennifer A Field,et al.  Fluorochemical mass flows in a municipal wastewater treatment facility. , 2006, Environmental science & technology.

[4]  H. Schröder,et al.  Determination of fluorinated surfactants and their metabolites in sewage sludge samples by liquid chromatography with mass spectrometry and tandem mass spectrometry after pressurised liquid extraction and separation on fluorine-modified reversed-phase sorbents. , 2003, Journal of chromatography. A.

[5]  A. Seacat,et al.  Biotransformation of N-ethyl-N-(2-hydroxyethyl)perfluorooctanesulfonamide by rat liver microsomes, cytosol, and slices and by expressed rat and human cytochromes P450. , 2004, Chemical research in toxicology.

[6]  C. Elcombe,et al.  Sub-chronic dietary toxicity of potassium perfluorooctanesulfonate in rats. , 2003, Toxicology.

[7]  Harvey J Clewell,et al.  Pharmacokinetic modeling of saturable, renal resorption of perfluoroalkylacids in monkeys--probing the determinants of long plasma half-lives. , 2006, Toxicology.

[8]  A. Seacat,et al.  N-GLUCURONIDATION OF PERFLUOROOCTANESULFONAMIDE BY HUMAN, RAT, DOG, AND MONKEY LIVER MICROSOMES AND BY EXPRESSED RAT AND HUMAN UDP-GLUCURONOSYLTRANSFERASES , 2006, Drug Metabolism and Disposition.

[9]  Martin Kraft,et al.  Biomonitoring of Perfluorinated Compounds in Children and Adults Exposed to Perfluorooctanoate-Contaminated Drinking Water , 2008, Environmental health perspectives.

[10]  N. Kudo,et al.  Rat Organic Anion Transporter 3 and Organic Anion Transporting Polypeptide 1 Mediate Perfluorooctanoic Acid Transport , 2007 .

[11]  A. Calafat,et al.  Polyfluoroalkyl Chemicals in the U.S. Population: Data from the National Health and Nutrition Examination Survey (NHANES) 2003–2004 and Comparisons with NHANES 1999–2000 , 2007, Environmental health perspectives.

[12]  John W. Froehlich,et al.  Half-Life of Serum Elimination of Perfluorooctanesulfonate,Perfluorohexanesulfonate, and Perfluorooctanoate in Retired Fluorochemical Production Workers , 2007, Environmental health perspectives.

[13]  J. Johnson,et al.  Cholestyramine-enhanced fecal elimination of carbon-14 in rats after administration of ammonium [14C]perfluorooctanoate or potassium [14C]perfluorooctanesulfonate. , 1984, Fundamental and applied toxicology : official journal of the Society of Toxicology.

[14]  R. G. York,et al.  Toxicological evaluation of potassium perfluorobutanesulfonate in a 90-day oral gavage study with Sprague-Dawley rats. , 2009, Toxicology.

[15]  Derek C G Muir,et al.  Biological monitoring of polyfluoroalkyl substances: A review. , 2006, Environmental science & technology.

[16]  Timothy J Wallington,et al.  Atmospheric chemistry of N-methyl perfluorobutane sulfonamidoethanol, C4F9SO2N(CH3)CH2CH2OH: kinetics and mechanism of reaction with OH. , 2006, Environmental science & technology.

[17]  Division on Earth Guide for the Care and Use of Laboratory Animals , 1996 .

[18]  N. Kudo,et al.  Sex hormone-regulated renal transport of perfluorooctanoic acid. , 2002, Chemico-biological interactions.

[19]  C. Elcombe,et al.  Erratum to “Sub-chronic dietary toxicity of potassium perfluorooctanesulfonate in rats” [Toxicology 183 (2003) 117–131] , 2003 .

[20]  Timothy R Church,et al.  Decline in perfluorooctanesulfonate and other polyfluoroalkyl chemicals in American Red Cross adult blood donors, 2000-2006. , 2008, Environmental science & technology.