Computing the Discrete Fourier Transform on a Hexagonal Lattice

Abstract The computation of the Discrete Fourier Transform for a general lattice in ℝd can be reduced to the computation of the standard 1-dimensional Discrete Fourier Transform. We provide a mathematically rigorous but simple treatment of this procedure and apply it to the DFT on the hexagonal lattice.

[1]  James C. Ehrhardt Hexagonal fast Fourier transform with rectangular output , 1993, IEEE Trans. Signal Process..

[2]  Jayanthi Sivaswamy,et al.  Hexagonal Image Processing: A Practical Approach (Advances in Pattern Recognition) , 2005 .

[3]  Gerhard X. Ritter,et al.  Fast Fourier Transform for Hexagonal Aggregates , 2004, Journal of Mathematical Imaging and Vision.

[4]  R. Tolimieri,et al.  Algorithms for Discrete Fourier Transform and Convolution , 1989 .

[5]  Kevin Keating,et al.  Isohedral Polyomino Tiling of the Plane , 1999, Discret. Comput. Geom..

[6]  Abderrezak Guessoum,et al.  Fast algorithms for the multidimensional discrete Fourier transform , 1986, IEEE Trans. Acoust. Speech Signal Process..

[7]  R. Mersereau,et al.  A unified treatment of Cooley-Tukey algorithms for the evaluation of the multidimensional DFT , 1981 .

[8]  H. O. Foulkes Abstract Algebra , 1967, Nature.

[9]  David Clifford Wilson,et al.  An Isomorphism Between the P-adic Integers and a Ring Associated with a Tiling of N-space By Permutohedra , 1994, Discret. Appl. Math..

[10]  R. J. Green,et al.  Fingerprint classification using a hexagonal fast fourier transform , 1996, Pattern Recognit..

[11]  A. L. Nel Hexagonal image processing , 1989, COMSIG 1989 Proceedings: Southern African Conference on Communications and Signal Processing.

[12]  A.K. Krishnamurthy,et al.  Multidimensional digital signal processing , 1985, Proceedings of the IEEE.

[13]  Artyom M. Grigoryan Efficient algorithms for computing the 2-D hexagonal Fourier transforms , 2002, IEEE Trans. Signal Process..