Configuration Checking with Aspiration in Local Search for SAT

An interesting strategy called configuration checking (CC) was recently proposed to handle the cycling problem in local search for Minimum Vertex Cover. A natural question is whether this CC strategy also works for SAT. The direct application of CC did not result in stochastic local search (SLS) algorithms that can compete with the current best SLS algorithms for SAT. In this paper, we propose a new heuristic based on CC for SLS algorithms for SAT, which is called configuration checking with aspiration (CCA). It is used to develop a new SLS algorithm called Swcca. The experiments on random 3-SAT instances show that Swcca significantly outperforms Sparrow2011, the winner of the random satisfiable category of the SAT Competition 2011, which is considered to be the best local search solver for random 3-SAT instances. Moreover, the experiments on structured instances show that Swcca is competitive with Sattime, the best local search solver for the crafted benchmark in the SAT Competition 2011.

[1]  Marijn Heule,et al.  EagleUP: Solving Random 3-SAT Using SLS with Unit Propagation , 2011, SAT.

[2]  Lakhdar Sais,et al.  Boosting Local Search Thanks to cdcl , 2010, LPAR.

[3]  Holger H. Hoos,et al.  Scaling and Probabilistic Smoothing: Efficient Dynamic Local Search for SAT , 2002, CP.

[4]  Chu Min Li,et al.  Diversification and Determinism in Local Search for Satisfiability , 2005, SAT.

[5]  Zhe Wu,et al.  An Efficient Global-Search Strategy in Discrete Lagrangian Methods for Solving Hard Satisfiability Problems , 2000, AAAI/IAAI.

[6]  Matthias F. Stallmann,et al.  A Local Search SAT Solver Using an Effective Switching Strategy and an Efficient Unit Propagation , 2003, SAT.

[7]  John Thornton,et al.  Additive versus Multiplicative Clause Weighting for SAT , 2004, AAAI.

[8]  Bart Selman,et al.  Incomplete Algorithms , 2021, Handbook of Satisfiability.

[9]  Holger H. Hoos,et al.  An adaptive noise mechanism for walkSAT , 2002, AAAI/IAAI.

[10]  Wei Li,et al.  Exact Phase Transitions in Random Constraint Satisfaction Problems , 2000, J. Artif. Intell. Res..

[11]  Harry Zhang,et al.  Combining Adaptive Noise and Look-Ahead in Local Search for SAT , 2007, SAT.

[12]  Abdul Sattar,et al.  Neighbourhood Clause Weight Redistribution in Local Search for SAT , 2005, CP.

[13]  Emile H. L. Aarts,et al.  Theoretical aspects of local search , 2006, Monographs in Theoretical Computer Science. An EATCS Series.

[14]  Kaile Su,et al.  Local Search with Configuration Checking for SAT , 2011, 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence.

[15]  Ke Xu,et al.  Random constraint satisfaction: Easy generation of hard (satisfiable) instances , 2007, Artif. Intell..

[16]  Kaile Su,et al.  EWLS: A New Local Search for Minimum Vertex Cover , 2010, AAAI.

[17]  Bart Selman,et al.  Evidence for Invariants in Local Search , 1997, AAAI/IAAI.

[18]  Holger H. Hoos,et al.  Captain Jack: New Variable Selection Heuristics in Local Search for SAT , 2011, SAT.

[19]  Abdul Sattar,et al.  Local search with edge weighting and configuration checking heuristics for minimum vertex cover , 2011, Artif. Intell..

[20]  Toby Walsh,et al.  Towards an Understanding of Hill-Climbing Procedures for SAT , 1993, AAAI.

[21]  Bart Selman,et al.  Noise Strategies for Improving Local Search , 1994, AAAI.

[22]  John Thornton,et al.  Clause Weighting Local Search for SAT , 2005, Journal of Automated Reasoning.

[23]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[24]  Saïd Salhi,et al.  Defining tabu list size and aspiration criterion within tabu search methods , 2002, Comput. Oper. Res..

[25]  Edward A. Hirsch,et al.  UnitWalk: A new SAT solver that uses local search guided by unit clause elimination , 2005, Annals of Mathematics and Artificial Intelligence.

[26]  Lakhdar Sais,et al.  Tabu Search for SAT , 1997, AAAI/IAAI.

[27]  Dale Schuurmans,et al.  The Exponentiated Subgradient Algorithm for Heuristic Boolean Programming , 2001, IJCAI.

[28]  Adrian Balint,et al.  Improving Stochastic Local Search for SAT with a New Probability Distribution , 2010, SAT.

[29]  Emile H. L. Aarts,et al.  Theoretical Aspects of Local Search (Monographs in Theoretical Computer Science. An EATCS Series) , 2007 .

[30]  Dale Schuurmans,et al.  Local search characteristics of incomplete SAT procedures , 2000, Artif. Intell..

[31]  Holger H. Hoos,et al.  Dynamic Scoring Functions with Variable Expressions: New SLS Methods for Solving SAT , 2010, SAT.

[32]  Adrian Balint,et al.  A Novel Approach to Combine a SLS- and a DPLL-Solver for the Satisfiability Problem , 2009, SAT.

[33]  Thomas Stützle,et al.  Local Search Algorithms for SAT: An Empirical Evaluation , 2000, Journal of Automated Reasoning.