Practical notes on building molecular graph generative models

[1]  Andrey Kazennov,et al.  The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology , 2016, Oncotarget.

[2]  Niloy Ganguly,et al.  NeVAE: A Deep Generative Model for Molecular Graphs , 2018, AAAI.

[3]  G. V. Paolini,et al.  Quantifying the chemical beauty of drugs. , 2012, Nature chemistry.

[4]  Yibo Li,et al.  Multi-objective de novo drug design with conditional graph generative model , 2018, Journal of Cheminformatics.

[5]  Prafulla Dhariwal,et al.  Glow: Generative Flow with Invertible 1x1 Convolutions , 2018, NeurIPS.

[6]  Ola Engkvist,et al.  Graph networks for molecular design , 2020, Mach. Learn. Sci. Technol..

[7]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[8]  Michael F. Crowley,et al.  Message-passing neural networks for high-throughput polymer screening , 2018, The Journal of chemical physics.

[9]  Jean-Louis Reymond,et al.  Enumeration of 166 Billion Organic Small Molecules in the Chemical Universe Database GDB-17 , 2012, J. Chem. Inf. Model..

[10]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[11]  Andrew R. Leach,et al.  ChEMBL: towards direct deposition of bioassay data , 2018, Nucleic Acids Res..

[12]  Regina Barzilay,et al.  Analyzing Learned Molecular Representations for Property Prediction , 2019, J. Chem. Inf. Model..

[13]  John J. Irwin,et al.  ZINC 15 – Ligand Discovery for Everyone , 2015, J. Chem. Inf. Model..

[14]  Lorenz C. Blum,et al.  970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. , 2009, Journal of the American Chemical Society.

[15]  Alán Aspuru-Guzik,et al.  Convolutional Networks on Graphs for Learning Molecular Fingerprints , 2015, NIPS.

[16]  Renjie Liao,et al.  Efficient Graph Generation with Graph Recurrent Attention Networks , 2019, NeurIPS.

[17]  Alán Aspuru-Guzik,et al.  Optimizing distributions over molecular space. An Objective-Reinforced Generative Adversarial Network for Inverse-design Chemistry (ORGANIC) , 2017 .

[18]  Cao Xiao,et al.  Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders , 2018, NeurIPS.

[19]  Thomas Blaschke,et al.  REINVENT 2.0: An AI Tool for De Novo Drug Design , 2020, J. Chem. Inf. Model..

[20]  Elman Mansimov,et al.  Molecular Geometry Prediction using a Deep Generative Graph Neural Network , 2019, Scientific Reports.

[21]  Fei Wang,et al.  MoFlow: An Invertible Flow Model for Generating Molecular Graphs , 2020, KDD.

[22]  Ola Engkvist,et al.  Randomized SMILES strings improve the quality of molecular generative models , 2019, Journal of Cheminformatics.

[23]  Alán Aspuru-Guzik,et al.  Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules , 2016, ACS central science.

[24]  Ola Engkvist,et al.  A de novo molecular generation method using latent vector based generative adversarial network , 2019, J. Cheminformatics.

[25]  Nikos Komodakis,et al.  GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders , 2018, ICANN.

[26]  Pavlo O. Dral,et al.  Quantum chemistry structures and properties of 134 kilo molecules , 2014, Scientific Data.

[27]  Yang Li,et al.  PotentialNet for Molecular Property Prediction , 2018, ACS central science.

[28]  Peter Ertl,et al.  Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions , 2009, J. Cheminformatics.

[29]  Michael Gastegger,et al.  Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules , 2019, NeurIPS.

[30]  Joseph Gomes,et al.  MoleculeNet: a benchmark for molecular machine learning† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc02664a , 2017, Chemical science.

[31]  Qi Liu,et al.  Constrained Graph Variational Autoencoders for Molecule Design , 2018, NeurIPS.

[32]  George Papadatos,et al.  The ChEMBL database in 2017 , 2016, Nucleic Acids Res..

[33]  Thomas Blaschke,et al.  Molecular de-novo design through deep reinforcement learning , 2017, Journal of Cheminformatics.

[34]  Jure Leskovec,et al.  Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation , 2018, NeurIPS.

[35]  Seokho Kang,et al.  Efficient learning of non-autoregressive graph variational autoencoders for molecular graph generation , 2019, Journal of Cheminformatics.