Nature Driven Bio‐Piezoelectric/Triboelectric Nanogenerator as Next‐Generation Green Energy Harvester for Smart and Pollution Free Society

[1]  A. L. Stanford,et al.  Evidence of Ferroelectricity in RNA , 1968, Nature.

[2]  Yunlong Zi,et al.  Self‐Powered Wireless Sensor Node Enabled by a Duck‐Shaped Triboelectric Nanogenerator for Harvesting Water Wave Energy , 2017 .

[3]  Puchuan Tan,et al.  Nanogenerator for Biomedical Applications , 2018, Advanced healthcare materials.

[4]  Ruediger Kuehr,et al.  The Global E-waste Monitor 2017: Quantities, Flows and Resources , 2015 .

[5]  Ping Zhao,et al.  Sponge‐Like Piezoelectric Polymer Films for Scalable and Integratable Nanogenerators and Self‐Powered Electronic Systems , 2014 .

[6]  Konrad Walus,et al.  Piezoelectric paper fabricated via nanostructured barium titanate functionalization of wood cellulose fibers. , 2014, ACS applied materials & interfaces.

[7]  Seung-Wuk Lee,et al.  Facile patterning of genetically engineered M13 bacteriophage for directional growth of human fibroblast cells , 2011 .

[8]  Hyunjung Shin,et al.  Strong anisotropy of ferroelectricity in lead-free bismuth silicate. , 2015, Nanoscale.

[9]  Seong-Jun Kim,et al.  Bacterial Nano‐Cellulose Triboelectric Nanogenerator , 2017 .

[10]  Ren Zhu,et al.  Environmental effects on nanogenerators , 2015 .

[11]  Guangzhao Zhang,et al.  Effects of Cr3+ on the structure of collagen fiber. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[12]  Yang Zou,et al.  Biodegradable triboelectric nanogenerator as a life-time designed implantable power source , 2016, Science Advances.

[13]  X. She,et al.  Fabrication and characterisation of α-chitin nanofibers and highly transparent chitin films by pulsed ultrasonication. , 2013, Carbohydrate polymers.

[14]  Thomas Scheibel,et al.  The elaborate structure of spider silk , 2008, Prion.

[15]  Kyung Cheol Choi,et al.  Chitin Nanofiber Transparent Paper for Flexible Green Electronics , 2016, Advanced materials.

[16]  E. Fukada On the Piezoelectric Effect of Silk Fibers , 1956 .

[17]  Bo Chen,et al.  Scavenging Wind Energy by Triboelectric Nanogenerators , 2018 .

[18]  E. Fukada,et al.  Piezoelectricity of a-chitin , 1975 .

[19]  Tae Yun Kim,et al.  Control of Skin Potential by Triboelectrification with Ferroelectric Polymers , 2015, Advanced materials.

[20]  Zhong Lin Wang,et al.  Theoretical study of contact-mode triboelectric nanogenerators as an effective power source , 2013 .

[21]  Dipankar Mandal,et al.  Sustainable Energy Generation from Piezoelectric Biomaterial for Noninvasive Physiological Signal Monitoring , 2017 .

[22]  Zhong Lin Wang,et al.  Triboelectric Nanogenerator Enabled Body Sensor Network for Self-Powered Human Heart-Rate Monitoring. , 2017, ACS nano.

[23]  Kewei Zhang,et al.  A One‐Structure‐Based Multieffects Coupled Nanogenerator for Simultaneously Scavenging Thermal, Solar, and Mechanical Energies , 2017, Advanced science.

[24]  Andrew A. Marino,et al.  Piezoelectricity in cementum, dentine and bone. , 1989, Archives of oral biology.

[25]  Neng-Hui Zhang,et al.  Piezoelectric properties of single-strand DNA molecular brush biolayers , 2007 .

[26]  S. Tofail,et al.  Control of piezoelectricity in amino acids by supramolecular packing. , 2018 .

[27]  Zhong Lin Wang,et al.  Reviving Vibration Energy Harvesting and Self-Powered Sensing by a Triboelectric Nanogenerator , 2017 .

[28]  Ju-Hyuck Lee,et al.  Micropatterned P(VDF‐TrFE) Film‐Based Piezoelectric Nanogenerators for Highly Sensitive Self‐Powered Pressure Sensors , 2015 .

[29]  Swagata Roy,et al.  Biowaste crab shell-extracted chitin nanofiber-based superior piezoelectric nanogenerator , 2018 .

[30]  Zhong Lin Wang,et al.  Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors , 2015 .

[31]  Wei Tang,et al.  Rotating‐Disk‐Based Direct‐Current Triboelectric Nanogenerator , 2014 .

[32]  Eiichi Fukada,et al.  Piezoelectricity of Wood , 1955 .

[33]  Xiao Wei Sun,et al.  Flexible Piezoelectric Nanocomposite Generators Based on Formamidinium Lead Halide Perovskite Nanoparticles , 2016 .

[34]  Jeong Min Baik,et al.  Silk fibroin-based biodegradable piezoelectric composite nanogenerators using lead-free ferroelectric nanoparticles , 2015 .

[35]  Damar Yoga Kusuma,et al.  Polarization Orientation, Piezoelectricity, and Energy Harvesting Performance of Ferroelectric PVDF‐TrFE Nanotubes Synthesized by Nanoconfinement , 2014 .

[36]  Sandip Maiti,et al.  An Approach to Design Highly Durable Piezoelectric Nanogenerator Based on Self‐Poled PVDF/AlO‐rGO Flexible Nanocomposite with High Power Density and Energy Conversion Efficiency , 2016 .

[37]  Sumanta Kumar Karan,et al.  Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester. , 2015, Nanoscale.

[38]  Meng Zhang,et al.  Coupled Supercapacitor and Triboelectric Nanogenerator Boost Biomimetic Pressure Sensor , 2018 .

[39]  Ji-Beom Yoo,et al.  Highly Stretchable Piezoelectric‐Pyroelectric Hybrid Nanogenerator , 2014, Advanced materials.

[40]  Josh Lepawsky,et al.  Mapping international flows of electronic waste , 2010 .

[41]  Fan Yang,et al.  In Vivo Self-Powered Wireless Cardiac Monitoring via Implantable Triboelectric Nanogenerator. , 2016, ACS nano.

[42]  Youn Jung Park,et al.  Nonvolatile polymer memory with nanoconfinement of ferroelectric crystals. , 2011, Nano letters.

[43]  Zhong Lin Wang,et al.  Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. , 2010, Nature communications.

[44]  Ruediger Kuehr,et al.  Assessing the Health Effects of Informal E-Waste Processing , 2013 .

[45]  Eiichi Fukada,et al.  Piezoelectricity as a fundamental property of wood , 1968, Wood Science and Technology.

[46]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[47]  Geon-Tae Hwang,et al.  Self‐Powered Wireless Sensor Node Enabled by an Aerosol‐Deposited PZT Flexible Energy Harvester , 2016 .

[48]  L. Makowski,et al.  Structural polymorphism correlated to surface charge in filamentous bacteriophages. , 1992, Biophysical journal.

[49]  W. Scott,et al.  Molecular structure of fd (f1, M13) filamentous bacteriophage refined with respect to X-ray fibre diffraction and solid-state NMR data supports specific models of phage assembly at the bacterial membrane. , 2006, Journal of molecular biology.

[50]  Mankang Zhu,et al.  Highly durable piezoelectric energy harvester based on a PVDF flexible nanocomposite filled with oriented BaTi2O5 nanorods with high power density , 2018, Nano Energy.

[51]  Dipankar Mandal,et al.  High-performance bio-piezoelectric nanogenerator made with fish scale , 2016 .

[52]  O. Ouda,et al.  E-waste environmental and information security threat: GCC countries vulnerabilities , 2018, Euro-Mediterranean Journal for Environmental Integration.

[53]  Sumanta Kumar Karan,et al.  Nature driven spider silk as high energy conversion efficient bio-piezoelectric nanogenerator , 2018, Nano Energy.

[54]  Yang Jie,et al.  From triboelectric nanogenerator to self-powered smart floor: A minimalist design , 2017 .

[55]  K. Yao,et al.  Nanoconfinement induced crystal orientation and large piezoelectric coefficient in vertically aligned P(VDF-TrFE) nanotube array , 2015, Scientific Reports.

[56]  Kyung‐Eun Byun,et al.  Control of Triboelectrification by Engineering Surface Dipole and Surface Electronic State. , 2016, ACS applied materials & interfaces.

[57]  H. Athenstaedt Permanent Longitudinal Electric Polarization and Pyroelectric Behaviour of Collagenous Structures and Nervous Tissue in Man and other Vertebrates , 1970, Nature.

[58]  Canan Dagdeviren,et al.  Cooperativity in the Enhanced Piezoelectric Response of Polymer Nanowires , 2014, Advanced materials.

[59]  S. Lang,et al.  Pyroelectric Effect in Bone and Tendon , 1966, Nature.

[60]  Insight into Cigarette Wrapper and Electroactive Polymer Based Efficient TENG as Biomechanical Energy Harvester for Smart Electronic Applications , 2018, ACS Applied Energy Materials.

[61]  Guang Zhu,et al.  Flexible high-output nanogenerator based on lateral ZnO nanowire array. , 2010, Nano letters.

[62]  Vijay Narayan,et al.  A Scalable Nanogenerator Based on Self‐Poled Piezoelectric Polymer Nanowires with High Energy Conversion Efficiency , 2014, 1505.03694.

[63]  Eiichi Fukada,et al.  On the Piezoelectric Effect of Bone , 1957 .

[64]  E. Praveen,et al.  Investigations on the existence of piezoelectric property of a bio-polymer – chitosan and its application in vibration sensors , 2017 .

[65]  Dong Sung Kim,et al.  Spontaneous occurrence of liquid-solid contact electrification in nature: Toward a robust triboelectric nanogenerator inspired by the natural lotus leaf , 2017 .

[66]  Steve F. A. Acquah,et al.  Carbon nanotubes on a spider silk scaffold , 2013, Nature Communications.

[67]  Gilbert U Adie,et al.  Soil Pollution by Toxic Metals near E-waste Recycling Operations in Ibadan, Nigeria. , 2016, Journal of health & pollution.

[68]  Sumanta Kumar Karan,et al.  A strategy to develop an efficient piezoelectric nanogenerator through ZTO assisted γ-phase nucleation of PVDF in ZTO/PVDF nanocomposite for harvesting bio-mechanical energy and energy storage application , 2018, Materials Chemistry and Physics.

[69]  Stephen Mann,et al.  Physical properties of type I collagen extracted from fish scales of Pagrus major and Oreochromis niloticas. , 2003, International journal of biological macromolecules.

[70]  M. Rinaudo,et al.  Chitin and chitosan: Properties and applications , 2006 .

[71]  J. Duchesne,et al.  Thermal and Electrical Properties of Nucleic Acids and Proteins , 1960, Nature.

[72]  Zhong Lin Wang,et al.  Flexible triboelectric generator , 2012 .

[73]  S. Lau,et al.  Ferroelectric polarization effects on the transport properties of graphene/PMN-PT field effect transistors , 2013 .

[74]  Adebola A. Adeyi,et al.  Lead and Cadmium Levels in Residential Soils of Lagos and Ibadan, Nigeria , 2017, Journal of health & pollution.

[75]  Senentxu Lanceros-Méndez,et al.  Piezoelectric polymers as biomaterials for tissue engineering applications. , 2015, Colloids and surfaces. B, Biointerfaces.

[76]  Jin Kon Kim,et al.  A new insight towards eggshell membrane as high energy conversion efficient bio-piezoelectric energy harvester , 2018, Materials Today Energy.

[77]  Guang Zhu,et al.  Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications , 2015 .

[78]  Dipankar Mandal,et al.  Efficient natural piezoelectric nanogenerator: Electricity generation from fish swim bladder , 2016 .

[79]  Yang Zou,et al.  Fully Bioabsorbable Natural‐Materials‐Based Triboelectric Nanogenerators , 2018, Advanced materials.

[80]  Dipankar Mandal,et al.  Bio-assembled, piezoelectric prawn shell made self-powered wearable sensor for non-invasive physiological signal monitoring , 2017 .

[81]  David L Kaplan,et al.  Structural Origins of Silk Piezoelectricity , 2011, Advanced functional materials.

[82]  Wei Tang,et al.  Water wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogenerator , 2017 .

[83]  Zhibin Zhang,et al.  Flexible piezoelectric nanogenerator made of poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) thin film , 2014 .

[84]  J. Scheinbeim,et al.  Piezoelectric response of scleral collagen. , 1998, Journal of biomedical materials research.

[85]  Majid Minary-Jolandan,et al.  Nanoscale characterization of isolated individual type I collagen fibrils: polarization and piezoelectricity , 2009, Nanotechnology.

[86]  Eiichi Fukada,et al.  Piezoelectric Effects in Collagen , 1964 .

[87]  Bin Li,et al.  Association between lung function in school children and exposure to three transition metals from an e-waste recycling area , 2013, Journal of Exposure Science and Environmental Epidemiology.

[88]  J. Rhim,et al.  Isolation of cellulose nanocrystals from onion skin and their utilization for the preparation of agar-based bio-nanocomposites films , 2015, Cellulose.

[89]  Jun Chen,et al.  Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. , 2014, ACS nano.

[90]  Minjeong Ha,et al.  Biodegradable, electro-active chitin nanofiber films for flexible piezoelectric transducers , 2018, Nano Energy.

[91]  Sergei V. Kalinin,et al.  Nanoscale Ferroelectricity in Crystalline γ‐Glycine , 2012 .

[92]  S. Tofail,et al.  Control of piezoelectricity in amino acids by supramolecular packing. , 2018, Nature materials.

[93]  Zi Jing Wong,et al.  Observation of piezoelectricity in free-standing monolayer MoS₂. , 2015, Nature nanotechnology.

[94]  J. Wu,et al.  High-output current density of the triboelectric nanogenerator made from recycling rice husks , 2016 .

[95]  M. Kellomäki,et al.  Piezoelectric Sensitivity of a Layered Film of Chitosan and Cellulose Nanocrystals , 2016 .

[96]  Il-Kwon Oh,et al.  Silk Nanofiber‐Networked Bio‐Triboelectric Generator: Silk Bio‐TEG , 2016 .

[97]  Zhong Lin Wang,et al.  Direct‐Current Triboelectric Nanogenerator Realized by Air Breakdown Induced Ionized Air Channel , 2018, Advanced Energy Materials.

[98]  Yang Zou,et al.  Self-Powered, One-Stop, and Multifunctional Implantable Triboelectric Active Sensor for Real-Time Biomedical Monitoring. , 2016, Nano letters.

[99]  Amir Manbachi,et al.  Development and Application of Piezoelectric Materials for Ultrasound Generation and Detection , 2011 .

[100]  Jianguo Zhu,et al.  Superior Piezoelectric Properties in Potassium–Sodium Niobate Lead‐Free Ceramics , 2016, Advanced materials.

[101]  M. Shamos,et al.  Piezoelectricity as a Fundamental Property of Biological Tissues , 1967, Nature.

[102]  Caofeng Pan,et al.  A Stretchable Nanogenerator with Electric/Light Dual‐Mode Energy Conversion , 2016 .

[103]  Shahjadi Hisan Farjana,et al.  Recent Advances in Nanogenerator‐Driven Self‐Powered Implantable Biomedical Devices , 2018 .

[104]  K. Kaznatcheev,et al.  Inner-Shell Excitation Spectroscopy of the Peptide Bond: Comparison of the C 1s, N 1s, and O 1s Spectra of Glycine, Glycyl-Glycine, and Glycyl-Glycyl-Glycine , 2003 .

[105]  Sang-Jae Kim,et al.  Self-powered pH sensor based on a flexible organic-inorganic hybrid composite nanogenerator. , 2014, ACS applied materials & interfaces.

[106]  Shaoqin Gong,et al.  Sequential Infiltration Synthesis of Doped Polymer Films with Tunable Electrical Properties for Efficient Triboelectric Nanogenerator Development , 2015, Advanced materials.

[107]  J. Zhai,et al.  Ultrahigh Piezoelectric Properties in Textured (K,Na)NbO3‐Based Lead‐Free Ceramics , 2018, Advanced materials.

[108]  Manoj Gupta,et al.  Self‐Compensated Insulating ZnO‐Based Piezoelectric Nanogenerators , 2014 .

[109]  Zhiyuan Gao,et al.  GaN nanowire arrays for high-output nanogenerators. , 2010, Journal of the American Chemical Society.

[110]  E. Fukada,et al.  Piezoelectric properties of oriented deoxyribonucleate films , 1976 .

[111]  Ning Wang,et al.  Natural triboelectric nanogenerator based on soles for harvesting low-frequency walking energy , 2017 .

[112]  J. Juuti,et al.  Cellulose Nanofibril Film as a Piezoelectric Sensor Material. , 2016, ACS applied materials & interfaces.

[113]  S. Vandenberghe,et al.  Energy Harvesting from the Beating Heart by a Mass Imbalance Oscillation Generator , 2012, Annals of Biomedical Engineering.

[114]  Chong-Yun Kang,et al.  Embossed Hollow Hemisphere‐Based Piezoelectric Nanogenerator and Highly Responsive Pressure Sensor , 2014 .

[115]  Reva M. Street,et al.  Variable piezoelectricity of electrospun chitin. , 2018, Carbohydrate polymers.

[116]  J. Caravanos,et al.  Assessing Worker and Environmental Chemical Exposure Risks at an e-Waste Recycling and Disposal Site in Accra, Ghana , 2011 .

[117]  Sumanta Kumar Karan,et al.  Effect of γ-PVDF on enhanced thermal conductivity and dielectric property of Fe-rGO incorporated PVDF based flexible nanocomposite film for efficient thermal management and energy storage applications , 2016 .

[118]  Zhengjun Wang,et al.  A Soft and Robust Spring Based Triboelectric Nanogenerator for Harvesting Arbitrary Directional Vibration Energy and Self‐Powered Vibration Sensing , 2018 .

[119]  T. Furukawa,et al.  Electrostriction as the Origin of Piezoelectricity in Ferroelectric Polymers , 1990 .

[120]  Yang Li,et al.  Structural Origin of the Strain‐Hardening of Spider Silk , 2011 .

[121]  Kang Hyuck Lee,et al.  Point‐Defect‐Passivated MoS2 Nanosheet‐Based High Performance Piezoelectric Nanogenerator , 2018, Advanced materials.

[122]  V. Sahajwalla,et al.  Concentration of precious metals during their recovery from electronic waste. , 2016, Waste management.

[123]  J. Koenig,et al.  Raman scattering of collagen, gelatin, and elastin , 1975, Biopolymers.

[124]  E. Fukada History and recent progress in piezoelectric polymers , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[125]  Zhong Lin Wang Triboelectric nanogenerators as new energy technology and self-powered sensors - principles, problems and perspectives. , 2014, Faraday discussions.

[126]  Zhongqiu Wang,et al.  Natural Leaf Made Triboelectric Nanogenerator for Harvesting Environmental Mechanical Energy , 2018 .

[127]  G. Zhu,et al.  Muscle‐Driven In Vivo Nanogenerator , 2010, Advanced materials.

[128]  B. Gullett,et al.  Characterization of air emissions and residual ash from open burning of electronic wastes during simulated rudimentary recycling operations , 2007 .

[129]  Zhong Lin Wang,et al.  Self-Sterilized Flexible Single-Electrode Triboelectric Nanogenerator for Energy Harvesting and Dynamic Force Sensing. , 2017, ACS nano.

[130]  Yong Lu,et al.  Advanced Organic Electrode Materials for Rechargeable Sodium‐Ion Batteries , 2017 .

[131]  Z. Shao,et al.  Synchrotron FTIR microspectroscopy of single natural silk fibers. , 2011, Biomacromolecules.

[132]  Wenzhuo Wu,et al.  Engineered and Laser‐Processed Chitosan Biopolymers for Sustainable and Biodegradable Triboelectric Power Generation , 2018, Advanced materials.

[133]  J. Duchesne,et al.  Radio‐Frequency Vibrational Absorption in Piezoelectric Crystals , 1955 .

[134]  J. Hearst,et al.  STATISTICAL MECHANICS OF THE EXTENSIBLE AND SHEARABLE ELASTIC ROD AND OF DNA , 1996 .

[135]  Ramamoorthy Ramesh,et al.  Virus-based piezoelectric energy generation. , 2012, Nature nanotechnology.

[136]  Chang Kyu Jeong,et al.  Highly‐Efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates , 2014, Advanced materials.

[137]  Veenu Joon,et al.  The Emerging Environmental and Public Health Problem of Electronic Waste in India , 2017, Journal of health & pollution.

[138]  E. Fukada,et al.  Piezoelectricity of biopolymers. , 1995, Biorheology.

[139]  Henry A. Sodano,et al.  A Low‐Frequency Energy Harvester from Ultralong, Vertically Aligned BaTiO3 Nanowire Arrays , 2014 .

[140]  Sumanta Kumar Karan,et al.  Bio-waste onion skin as an innovative nature-driven piezoelectric material with high energy conversion efficiency , 2017 .

[141]  Guang Zhu,et al.  Surface-charge engineering for high-performance triboelectric nanogenerator based on identical electrification materials , 2014 .

[142]  S. Lee,et al.  Toward Arbitrary‐Direction Energy Harvesting through Flexible Piezoelectric Nanogenerators Using Perovskite PbTiO3 Nanotube Arrays , 2017, Advanced materials.

[143]  Yeon Sik Choi,et al.  Piezoelectric Nylon‐11 Nanowire Arrays Grown by Template Wetting for Vibrational Energy Harvesting Applications , 2017 .

[144]  Chuntae Kim,et al.  Bioinspired piezoelectric nanogenerators based on vertically aligned phage nanopillars , 2015 .

[145]  Sungryul Yun,et al.  Discovery of Cellulose as a Smart Material , 2006 .

[146]  Long Lin,et al.  Theoretical Investigation and Structural Optimization of Single‐Electrode Triboelectric Nanogenerators , 2014 .

[147]  Zhiyi Wu,et al.  Self-Powered Multifunctional Motion Sensor Enabled by Magnetic-Regulated Triboelectric Nanogenerator. , 2018, ACS nano.

[148]  Feng Zhou,et al.  Leaves based triboelectric nanogenerator (TENG) and TENG tree for wind energy harvesting , 2019, Nano Energy.

[149]  Jie Chen,et al.  A Triboelectric Generator Based on Checker‐Like Interdigital Electrodes with a Sandwiched PET Thin Film for Harvesting Sliding Energy in All Directions , 2015 .

[150]  A. Bhalla,et al.  Biological ferroelectricity in human nail samples using Piezoresponse Force Microscopy , 2013 .

[151]  E. Fukada,et al.  Piezoelectricity in oriented DNA films , 1972 .

[152]  M. Alexe,et al.  Nanoscale properties of thin twin walls and surface layers in piezoelectric WO3−x , 2010 .

[153]  Carlo Ratti,et al.  Monitour: Tracking global routes of electronic waste. , 2018, Waste management.

[154]  Palanisamy Thanikaivelan,et al.  Collagen based magnetic nanocomposites for oil removal applications , 2012, Scientific Reports.

[155]  Tao Jiang,et al.  Robust Thin Films‐Based Triboelectric Nanogenerator Arrays for Harvesting Bidirectional Wind Energy , 2016 .

[156]  Seth Fraden,et al.  Smectic Phase in a Colloidal Suspension of Semiflexible Virus Particles , 1997 .

[157]  E. Fukada Piezoelectric properties of biological polymers , 1983, Quarterly Reviews of Biophysics.

[158]  N. Vijayan,et al.  Structural, dielectric and piezoelectric properties of nonlinear optical γ-glycine single crystals , 2011 .

[159]  A. Olatunji,et al.  Heavy Metal Contamination and Ecological Risk Assessment in Soils and Sediments of an Industrial Area in Southwestern Nigeria , 2018, Journal of health & pollution.

[160]  Sumanta Kumar Karan,et al.  A Facile Approach To Develop a Highly Stretchable PVC/ZnSnO3 Piezoelectric Nanogenerator with High Output Power Generation for Powering Portable Electronic Devices , 2016 .

[161]  Zhong Lin Wang,et al.  Effective energy storage from a triboelectric nanogenerator , 2016, Nature Communications.

[162]  Shin Hur,et al.  Flexible Inorganic Piezoelectric Acoustic Nanosensors for Biomimetic Artificial Hair Cells , 2014 .

[163]  Zhong Lin Wang,et al.  Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. , 2013, ACS nano.