Gas‐Driven Ultrafast Reversible Switching of Super‐hydrophobic Adhesion on Palladium‐Coated Silicon Nanowires

A gas-driven ultrafast adhesion switching of water droplets on palladium-coated Si nanowire arrays is demonstrated. By regulating the gas-ambient between the atmosphere and H2 , the super-hydrophobic adhesion is repeatedly switched between water-repellent and water-adhesive. The capability of modulating the super-hydrophobic adhesion on a super-hydrophobic surface with a non-contact mode could be applicable to novel functional lab-on-a-chip platforms.

[1]  F. A. Lewis,et al.  The Palladium-Hydrogen System , 1967, Platinum Metals Review.

[2]  T. Yen,et al.  Morphological Control of Single‐Crystalline Silicon Nanowire Arrays near Room Temperature , 2008 .

[3]  Yen Wei,et al.  Superhydrophobic modification of polyimide films based on gold-coated porous silver nanostructures and self-assembled monolayers , 2006 .

[4]  Lei Jiang,et al.  Petal effect: a superhydrophobic state with high adhesive force. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[5]  Kui‐Qing Peng,et al.  Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching , 2008 .

[6]  M. K. Dawood,et al.  Modulation of surface wettability of superhydrophobic substrates using Si nanowire arrays and capillary-force-induced nanocohesion , 2012 .

[7]  J. Rühe,et al.  Contact line shape on ultrahydrophobic post surfaces. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[8]  Xuefeng Gao,et al.  Biophysics: Water-repellent legs of water striders , 2004, Nature.

[9]  S. Bhatia,et al.  Manipulation of liquid droplets using amphiphilic, magnetic one-dimensional photonic crystal chaperones , 2004, Nature materials.

[10]  Michael Dickinson,et al.  Animal locomotion: How to walk on water , 2003, Nature.

[11]  Xinjian Feng,et al.  Design and Creation of Superwetting/Antiwetting Surfaces , 2006 .

[12]  Jin Zhai,et al.  Super-hydrophobic surfaces: From natural to artificial , 2002 .

[13]  J. Youngblood,et al.  Self‐Cleaning and Next Generation Anti‐Fog Surfaces and Coatings , 2008 .

[14]  C. Extrand,et al.  Model for Contact Angles and Hysteresis on Rough and Ultraphobic Surfaces , 2002 .

[15]  K. Kuczera,et al.  O2 activation by nonheme iron complexes: A monomeric Fe(III)-Oxo complex derived from O2. , 2000, Science.

[16]  A. Cassie,et al.  Wettability of porous surfaces , 1944 .

[17]  D. K. Schwartz,et al.  Selective acetylene detection through surface modification of metal–insulator–semiconductor sensors with alkanethiolate monolayers , 2009 .

[18]  Glen McHale,et al.  Plastron properties of a superhydrophobic surface , 2006 .

[19]  Yanlei Yu,et al.  Light-controlled quick switch of adhesion on a micro-arrayed liquid crystal polymer superhydrophobic film , 2012 .

[20]  Chih-Ming Ho,et al.  Dependence of macroscopic wetting on nanoscopic surface textures. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[21]  S. Yokojima,et al.  Phototunable diarylethene microcrystalline surfaces: lotus and petal effects upon wetting. , 2010, Angewandte Chemie.

[22]  M. Pirrung How to make a DNA chip. , 2002, Angewandte Chemie.

[23]  Chao Li,et al.  Reversible Switching of Water‐Droplet Mobility on a Superhydrophobic Surface Based on a Phase Transition of a Side‐Chain Liquid‐Crystal Polymer , 2009, Advanced Materials.

[24]  Jungmok Seo,et al.  Guided transport of water droplets on superhydrophobic-hydrophilic patterned Si nanowires. , 2011, ACS applied materials & interfaces.

[25]  Michael I. Newton,et al.  Superhydrophobic copper tubes with possible flow enhancement and drag reduction. , 2009, ACS applied materials & interfaces.

[26]  Lei Jiang,et al.  In Situ Fully Light‐Driven Switching of Superhydrophobic Adhesion , 2012 .

[27]  Sung Min Kang,et al.  Polydopamine microfluidic system toward a two-dimensional, gravity-driven mixing device. , 2012, Angewandte Chemie.

[28]  J. Myoung,et al.  Direct gravure printing of silicon nanowires using entropic attraction forces. , 2012, Small.