Tomographic tract tracing and data driven approaches to unravel complex 3D fiber anatomy of DBS relevant prefrontal projections to the diencephalic-mesencephalic junction in the marmoset

[1]  Mark C. Anderson,et al.  Lesion network localization of depression in multiple sclerosis , 2023, Nature Mental Health.

[2]  D. Denys,et al.  Tractography-based versus anatomical landmark-based targeting in vALIC deep brain stimulation for refractory obsessive-compulsive disorder , 2022, Molecular Psychiatry.

[3]  M. Majtanik,et al.  Structural connectivity of the ANT region based on human ex-vivo and HCP data. Relevance for DBS in ANT for epilepsy , 2022, NeuroImage.

[4]  K. Doya,et al.  The Brain/MINDS Marmoset Connectivity Atlas: exploring bidirectional tracing and tractography in the same stereotaxic space , 2022, bioRxiv.

[5]  M. Reisert,et al.  Resolving dyskinesias at sustained anti-OCD efficacy by steering of DBS away from the anteromedial STN to the mesencephalic ventral tegmentum – case report , 2022, Acta Neurochirurgica.

[6]  M. Reisert,et al.  “The Heart Asks Pleasure First”—Conceptualizing Psychiatric Diseases as MAINTENANCE Network Dysfunctions through Insights from slMFB DBS in Depression and Obsessive–Compulsive Disorder , 2022, Brain sciences.

[7]  Christopher R. Conner,et al.  Deep brain stimulation of the “medial forebrain bundle”: sustained efficacy of antidepressant effect over years , 2022, Molecular Psychiatry.

[8]  C. Normann,et al.  Efficacy of superolateral medial forebrain bundle deep brain stimulation in obsessive-compulsive disorder , 2022, Brain Stimulation.

[9]  A. Federspiel,et al.  Link between structural connectivity of the medial forebrain bundle, functional connectivity of the ventral tegmental area, and anhedonia in unipolar depression , 2022, NeuroImage: Clinical.

[10]  Z. Vahabi,et al.  Automated Drawing Tube (Camera Lucida) Method in Light Microscopy Images Analysis Can Comes True , 2021, Journal of microscopy and ultrastructure.

[11]  S. Haber,et al.  Prefrontal connectomics: from anatomy to human imaging , 2021, Neuropsychopharmacology.

[12]  Shi Jia Teo,et al.  Diverging prefrontal cortex fiber connection routes to the subthalamic nucleus and the mesencephalic ventral tegmentum investigated with long range (normative) and short range (ex-vivo high resolution) 7T DTI , 2021, Brain Structure and Function.

[13]  Kara A. Johnson,et al.  Connectomic Deep Brain Stimulation for Obsessive-Compulsive Disorder , 2021, Biological Psychiatry.

[14]  J. Bourne,et al.  The Marmoset: The Next Frontier in Understanding the Development of the Human Brain. , 2021, ILAR journal.

[15]  S. Haber,et al.  Four Deep Brain Stimulation Targets for Obsessive-Compulsive Disorder: Are They Different? , 2020, Biological Psychiatry.

[16]  K. Slavin,et al.  Deep brain stimulation for refractory obsessive-compulsive disorder (OCD): emerging or established therapy? , 2020, Molecular Psychiatry.

[17]  J. Yelnik,et al.  Deep brain stimulation of the subthalamic nucleus in obsessive–compulsives disorders: long-term follow-up of an open, prospective, observational cohort , 2020, Journal of Neurology, Neurosurgery, and Psychiatry.

[18]  C. McIntyre,et al.  Deep brain stimulation of terminating axons , 2020, Brain Stimulation.

[19]  R. Uitti,et al.  Neuroimaging Advances in Deep Brain Stimulation: Review of Indications, Anatomy, and Brain Connectomics , 2020, American Journal of Neuroradiology.

[20]  J. Luigjes,et al.  Distance to white matter trajectories is associated with treatment response to internal capsule deep brain stimulation in treatment-refractory depression , 2020, NeuroImage: Clinical.

[21]  B. Strange,et al.  A unified connectomic target for deep brain stimulation in obsessive-compulsive disorder , 2020, Nature Communications.

[22]  Åsa K. Björklund,et al.  Spatio-molecular domains identified in the mouse subthalamic nucleus and neighboring glutamatergic and GABAergic brain structures , 2020, Communications Biology.

[23]  H. Urbach,et al.  Tractographic description of major subcortical projection pathways passing the anterior limb of the internal capsule. Corticopetal organization of networks relevant for psychiatric disorders , 2020, NeuroImage: Clinical.

[24]  Sophie B. Sébille,et al.  The anatomo-functional organization of the hyperdirect cortical pathway to the subthalamic area using in vivo structural connectivity imaging in humans , 2019, Brain Structure and Function.

[25]  M. Hariz,et al.  Surgical decision making for deep brain stimulation should not be based on aggregated normative data mining , 2019, Brain Stimulation.

[26]  Martin Parent,et al.  Holographic Reconstruction of Axonal Pathways in the Human Brain , 2019, Neuron.

[27]  P. Krack,et al.  Long-term effects of subthalamic stimulation in Obsessive-Compulsive Disorder: Follow-up of a randomized controlled trial , 2019, Brain Stimulation.

[28]  Shin Ishii,et al.  MarmoNet: a pipeline for automated projection mapping of the common marmoset brain from whole-brain serial two-photon tomography , 2019, ArXiv.

[29]  H. Urbach,et al.  Superolateral medial forebrain bundle deep brain stimulation in major depression: a gateway trial , 2019, Neuropsychopharmacology.

[30]  D. Denys,et al.  Individual white matter bundle trajectories are associated with deep brain stimulation response in obsessive-compulsive disorder , 2019, Brain Stimulation.

[31]  H. Bergman,et al.  Deep brain stimulation: current challenges and future directions , 2019, Nature Reviews Neurology.

[32]  Patrick J. Karas,et al.  Deep Brain Stimulation for Obsessive Compulsive Disorder: Evolution of Surgical Stimulation Target Parallels Changing Model of Dysfunctional Brain Circuits , 2019, Front. Neurosci..

[33]  A. Parent,et al.  Single-axon tracing of the corticosubthalamic hyperdirect pathway in primates , 2018, Brain Structure and Function.

[34]  D. Siskind,et al.  A systematic review and meta‐analysis of deep brain stimulation for depression , 2018, Depression and anxiety.

[35]  Marco Reisert,et al.  The anatomy of the human medial forebrain bundle: Ventral tegmental area connections to reward-associated subcortical and frontal lobe regions , 2018, NeuroImage: Clinical.

[36]  Atsushi Iriki,et al.  The Brain/MINDS 3D digital marmoset brain atlas , 2018, Scientific Data.

[37]  Parag G. Patil,et al.  Subcallosal cingulate deep brain stimulation for treatment-resistant depression: a multisite, randomised, sham-controlled trial. , 2017, The lancet. Psychiatry.

[38]  F. Guzen,et al.  Nuclear organization of the substantia nigra, ventral tegmental area and retrorubral field of the common marmoset (Callithrix jacchus): A cytoarchitectonic and TH-immunohistochemistry study , 2016, Journal of Chemical Neuroanatomy.

[39]  H. Urbach,et al.  The medial forebrain bundle as a target for deep brain stimulation for obsessive-compulsive disorder , 2016, CNS Spectrums.

[40]  A. Schene,et al.  Deep Brain Stimulation of the Ventral Anterior Limb of the Internal Capsule for Treatment-Resistant Depression: A Randomized Clinical Trial. , 2016, JAMA psychiatry.

[41]  B. Mädler,et al.  Rapid Effects of Deep Brain Stimulation for Treatment-Resistant Major Depression , 2013, Biological Psychiatry.

[42]  S. Haber,et al.  The Organization of Prefrontal-Subthalamic Inputs in Primates Provides an Anatomical Substrate for Both Functional Specificity and Integration: Implications for Basal Ganglia Models and Deep Brain Stimulation , 2013, The Journal of Neuroscience.

[43]  Volker A Coenen,et al.  Human medial forebrain bundle (MFB) and anterior thalamic radiation (ATR): imaging of two major subcortical pathways and the dynamic balance of opposite affects in understanding depression. , 2012, The Journal of neuropsychiatry and clinical neurosciences.

[44]  Richard S. Frackowiak,et al.  Confirmation of functional zones within the human subthalamic nucleus: Patterns of connectivity and sub-parcellation using diffusion weighted imaging , 2012, NeuroImage.

[45]  Craig D. Hardman,et al.  Stereotaxic and Chemoarchitectural Atlas of the Brain of the Common Marmoset (Callithrix Jacchus) , 2012 .

[46]  Michael Petrides,et al.  The marmoset brain in stereotaxic coordinates , 2012 .

[47]  J. Panksepp,et al.  Cross-species affective functions of the medial forebrain bundle—Implications for the treatment of affective pain and depression in humans , 2011, Neuroscience & Biobehavioral Reviews.

[48]  Suzanne N Haber,et al.  Rules Ventral Prefrontal Cortical Axons Use to Reach Their Targets: Implications for Diffusion Tensor Imaging Tractography and Deep Brain Stimulation for Psychiatric Illness , 2011, The Journal of Neuroscience.

[49]  A. Grace,et al.  Cortico-Basal Ganglia Reward Network: Microcircuitry , 2010, Neuropsychopharmacology.

[50]  C. Elias,et al.  Forebrain projections to brainstem nuclei involved in the control of mandibular movements in rats. , 2009, European journal of oral sciences.

[51]  Volker A Coenen,et al.  MEDIAL FOREBRAIN BUNDLE STIMULATION AS A PATHOPHYSIOLOGICAL MECHANISM FOR HYPOMANIA IN SUBTHALAMIC NUCLEUS DEEP BRAIN STIMULATION FOR PARKINSON'S DISEASE , 2009, Neurosurgery.

[52]  W. Glannon Deep-Brain Stimulation for Depression , 2008, HEC forum : an interdisciplinary journal on hospitals' ethical and legal issues.

[53]  Y. Agid,et al.  Subthalamic nucleus stimulation in severe obsessive-compulsive disorder. , 2008, The New England journal of medicine.

[54]  J. Price Definition of the Orbital Cortex in Relation to Specific Connections with Limbic and Visceral Structures and Other Cortical Regions , 2007, Annals of the New York Academy of Sciences.

[55]  A. Björklund,et al.  Dopamine neuron systems in the brain: an update , 2007, Trends in Neurosciences.

[56]  D. Pandya,et al.  Fiber Pathways of the Brain , 2006 .

[57]  S. Haber,et al.  Prefrontal Cortical Projections to the Midbrain in Primates: Evidence for a Sparse Connection , 2006, Neuropsychopharmacology.

[58]  HOWARD M. ETLINGER,et al.  J O U R N A L , 2006 .

[59]  A. Lozano,et al.  Deep Brain Stimulation for Treatment-Resistant Depression , 2005, Neuron.

[60]  Larry W Swanson,et al.  Axonal projections from the parasubthalamic nucleus , 2004, The Journal of comparative neurology.

[61]  K. Akert,et al.  Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey , 1978, Experimental Brain Research.

[62]  S. Sesack,et al.  Projections from the Rat Prefrontal Cortex to the Ventral Tegmental Area: Target Specificity in the Synaptic Associations with Mesoaccumbens and Mesocortical Neurons , 2000, The Journal of Neuroscience.

[63]  J. Price,et al.  The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. , 2000, Cerebral cortex.

[64]  J. Price Prefrontal Cortical Networks Related to Visceral Function and Mood , 1999, Annals of the New York Academy of Sciences.

[65]  J. Price,et al.  Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in Macaque monkeys , 1998, The Journal of comparative neurology.

[66]  J. Price,et al.  Prefrontal cortical projections to the hypothalamus in Macaque monkeys , 1998, The Journal of comparative neurology.

[67]  Masahiko Inase,et al.  Corticosubthalamic input zones from forelimb representations of the dorsal and ventral divisions of the premotor cortex in the macaque monkey: comparison with the input zones from the primary motor cortex and the supplementary motor area , 1997, Neuroscience Letters.

[68]  M. Inase,et al.  Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  P. Overton,et al.  Stimulation of the prefrontal cortex in the rat induces patterns of activity in midbrain dopaminergic neurons which resemble natural burst events , 1996, Synapse.

[70]  G. Schaltenbrand,et al.  Atlas for Stereotaxy of the Human Brain , 1977 .

[71]  G. Leichnetz,et al.  The efferent projections of the medial prefrontal cortex in the squirrel monkey (Saimiri sciureus) , 1976, Brain Research.

[72]  G. Leichnetz,et al.  Efferent connections of the orbitofrontal cortex in the marmoset(Saguinus oedipus) , 1975, Brain Research.

[73]  Denis Dooley,et al.  Atlas of the Human Brain. , 1971 .