Compensated Horner scheme in complex floating point arithmetic
暂无分享,去创建一个
[1] Jean-Michel Muller,et al. Some functions computable with a fused-mac , 2005, 17th IEEE Symposium on Computer Arithmetic (ARITH'05).
[2] Peter Linz,et al. Accurate floating-point summation , 1970, CACM.
[3] Stef Graillat,et al. Error-free transformations in real and complex floating point arithmetic , 2007 .
[4] Siegfried M. Rump,et al. Verification of Positive Definiteness , 2006 .
[5] Yves Nievergelt,et al. Scalar fused multiply-add instructions produce floating-point matrix arithmetic provably accurate to the penultimate digit , 2003, TOMS.
[6] Siegfried M. Rump,et al. Accurate Sum and Dot Product , 2005, SIAM J. Sci. Comput..
[7] James Hardy Wilkinson,et al. Rounding errors in algebraic processes , 1964, IFIP Congress.
[8] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[9] Donald E. Knuth,et al. The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .
[10] Mei Han An,et al. accuracy and stability of numerical algorithms , 1991 .
[11] T. J. Dekker,et al. A floating-point technique for extending the available precision , 1971 .
[12] James Demmel,et al. Design, implementation and testing of extended and mixed precision BLAS , 2000, TOMS.
[13] S. Oishi,et al. ACCURATE FLOATING-POINT SUMMATION , 2005 .
[14] Richard P. Brent,et al. Error bounds on complex floating-point multiplication , 2007, Math. Comput..
[15] James Demmel,et al. Accurate and Efficient Floating Point Summation , 2003, SIAM J. Sci. Comput..
[16] Philippe Langlois,et al. Compensated Horner Scheme , 2005, Algebraic and Numerical Algorithms and Computer-assisted Proofs.