Monotonicity of zeros for a class of polynomials including hypergeometric polynomials

We study the monotonicity of zeros in connection with perturbed recurrence coefficients of polynomials satisfying certain three-term recurrence relations of Frobenius-type. These recurrence relations are the key ingredient for the tridiagonal approach developed by Delsarte and Genin to solve the standard linear prediction problem. As a particular case, we consider the Askey para-orthogonal polynomials on the unit circle, 2 F 1 ( - n , a + b i ; 2 a ; 1 - z ) , a , b ? R , extending a recent result about the monotonicity of their zeros with respect to the parameter b. Finally, the consequences of our results in the theory of orthogonal polynomials on the real line are discussed.

[1]  K. Driver,et al.  Zeros of the Hypergeometric Polynomial F(-n, b; c; z) , 2001, 0812.0708.

[2]  K. Castillo On perturbed Szegő recurrences , 2014 .

[3]  M. Kac,et al.  Gabor Szegö: Collected Papers , 1982 .

[4]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[5]  Kathy Driver,et al.  Zeros of the hypergeometric polynomials F(−n, b; 2b; z) , 2000 .

[6]  J. S. Dehesa,et al.  On orthogonal polynomials with perturbed recurrence relations , 1990 .

[7]  L. Moral,et al.  Measures and para orthogonal polynomials on the unit circle , 2002 .

[8]  Fernando R. Rafaeli,et al.  Inequalities for zeros of Jacobi polynomials via Sturm’s theorem: Gautschi’s conjectures , 2013, Numerical Algorithms.

[9]  Quadrature formula and zeros of para-orthogonal polynomials on the unit circle , 2002 .

[10]  Rupert Lasser,et al.  Orthogonal polynomials and hypergroups. II. The symmetric case , 1994 .

[11]  Ryszard Szwarc Sharp Estimates for Jacobi Matrices and Chain Sequences , 2002, J. Approx. Theory.

[12]  Y. Genin,et al.  Tridiagonal approach to the algebraic environment of Toeplitz matrices, part I: basic results , 1991 .

[13]  T. Chihara CHAIN SEQUENCES AND ORTHOGONAL POLYNOMIALS , 1962 .

[14]  Estelle L. Basor,et al.  Asymptotic formulas for Toeplitz determinants , 1978 .

[15]  Rank one perturbations and the zeros of paraorthogonal polynomials on the unit circle , 2006, math/0606037.

[16]  Al Young Providence, Rhode Island , 1975 .

[17]  Leon M. Hall,et al.  Special Functions , 1998 .

[18]  Barry Simon,et al.  Orthogonal Polynomials on the Unit Circle , 2004, Encyclopedia of Special Functions: The Askey-Bateman Project.

[19]  Some new results for chain-sequence polynomials , 1995 .

[20]  A. Ranga,et al.  Zeros of a family of hypergeometric para‐orthogonal polynomials on the unit circle , 2013 .

[21]  A. Lenard Some remarks on large Toeplitz determinants , 1972 .

[22]  W. J. Thron,et al.  Moment Theory, Orthogonal Polynomials, Quadrature, and Continued Fractions Associated with the unit Circle , 1989 .

[23]  On the Hellmann-Feynman theorem and the variation of zeros of certain special functions , 1988 .

[24]  F. V. Atkinson,et al.  Discrete and Continuous Boundary Problems , 1964 .

[25]  C. Itzykson Toeplitz determinants as . . . , 1968 .

[26]  Barry Simon Szego's Theorem and Its Descendants: Spectral Theory for L2 Perturbations of Orthogonal Polynomials (M. B. Porter Lectures) , 2010 .

[27]  T. Stieltjes,et al.  Recherches sur les fractions continues [ suite et fin ] , 1895 .

[28]  F. Marcellán,et al.  Orthogonal polynomials on the unit circle and their derivatives , 1991 .

[29]  Alexei Zhedanov,et al.  On Some Classes of Polynomials Orthogonal on Arcs of the Unit Circle Connected with Symmetric Orthogonal Polynomials on an Interval , 1998 .

[30]  Manwah Lilian Wong First and second kind paraorthogonal polynomials and their zeros , 2007, J. Approx. Theory.

[31]  K. Castillo,et al.  On co-polynomials on the real line , 2015 .

[32]  A. Sri Ranga,et al.  A Favard type theorem for orthogonal polynomials on the unit circle from a three term recurrence formula , 2013, J. Approx. Theory.

[33]  T. Chihara,et al.  ON CO-RECURSIVE ORTHOGONAL POLYNOMIALS , 1957 .

[34]  H. Widom Toeplitz Determinants with Singular Generating Functions , 1973 .

[35]  T. Stieltjes Recherches sur les fractions continues , 1995 .

[36]  G. Baxter Polynomials defined by a difference system , 1960 .

[37]  A. Markoff Sur les racines de certaines équations , 1886 .

[38]  Nico M. Temme Uniform asymptotic expansion for a class of polynomials biorthogonal on the unit circle , 1985 .

[39]  A. Markoff Sur les racines de certaines équations , 1886 .

[40]  Philippe Delsarte,et al.  The split Levinson algorithm , 1986, IEEE Trans. Acoust. Speech Signal Process..

[41]  Chain Sequences, Orthogonal Polynomials, and Jacobi Matrices , 1998 .

[42]  Location of the zeros of polynomials satisfying three-term recurrence relations. I. General case with complex coefficients , 1985 .

[43]  Michael E. Fisher,et al.  Toeplitz Determinants: Some Applications, Theorems, and Conjectures , 2007 .

[44]  A discrete approach to monotonicity of zeros of orthogonal polynomials , 1991 .

[45]  G. Szegő Polynomials orthogonal on the unit circle , 1939 .

[46]  H. Wall,et al.  Analytic Theory of Continued Fractions , 2000 .

[47]  T. Chihara,et al.  An Introduction to Orthogonal Polynomials , 1979 .