Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations
暂无分享,去创建一个
[1] Da Xu,et al. Uniform l1 behaviour in a second-order difference-type method for a linear Volterra equation with completely monotonic kernel I: stability , 2011 .
[2] William McLean,et al. Discontinuous Galerkin method for an evolution equation with a memory term of positive type , 2009, Math. Comput..
[3] Yury Luchko,et al. Modeling anomalous heat transport in geothermal reservoirs via fractional diffusion equations , 2011 .
[4] William McLean,et al. Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation , 2009, Numerical Algorithms.
[5] Zhi‐zhong Sun,et al. A fully discrete difference scheme for a diffusion-wave system , 2006 .
[6] Dominik Schötzau,et al. An hp a priori error analysis of¶the DG time-stepping method for initial value problems , 2000 .
[7] C. Schwab. P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .
[8] J. Klafter,et al. The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .
[9] Eduardo Cuesta,et al. Convolution quadrature time discretization of fractional diffusion-wave equations , 2006, Math. Comput..
[10] Santos B. Yuste,et al. An Explicit Difference Method for Solving Fractional Diffusion and Diffusion-Wave Equations in the Caputo Form , 2011 .
[11] J. M. Sanz-Serna,et al. A numerical method for a partial integro-differential equation , 1988 .
[12] Dominik Schötzau,et al. Time Discretization of Parabolic Problems by the HP-Version of the Discontinuous Galerkin Finite Element Method , 2000, SIAM J. Numer. Anal..
[13] William McLean,et al. A second-order accurate numerical method for a fractional wave equation , 2006, Numerische Mathematik.
[14] William McLean,et al. Superconvergence of a Discontinuous Galerkin Method for Fractional Diffusion and Wave Equations , 2012, SIAM J. Numer. Anal..
[15] Stig Larsson,et al. Numerical solution of parabolic integro-differential equations by the discontinuous Galerkin method , 1998, Math. Comput..
[16] W. Schneider,et al. Fractional diffusion and wave equations , 1989 .
[17] Graeme Fairweather,et al. Spline collocation methods for a class of hyperbolic partial integro-differential equations , 1994 .
[18] Tao Tang,et al. A finite difference scheme for partial integro-differential equations with a weakly singular kernel , 1993 .
[19] V. Thomée,et al. Numerical solution via Laplace transforms of a fractional order evolution equation , 2010 .
[20] L. Delves,et al. On the numerical inversion of the Laplace transform , 1988 .
[21] Zhi‐zhong Sun,et al. A compact difference scheme for the fractional diffusion-wave equation , 2010 .
[22] R. Hilfer. Applications Of Fractional Calculus In Physics , 2000 .
[23] Christian Lubich,et al. Fast and Oblivious Convolution Quadrature , 2006, SIAM J. Sci. Comput..
[24] Dominik Schötzau,et al. hp-Discontinuous Galerkin Time-Stepping for Volterra Integrodifferential Equations , 2006, SIAM J. Numer. Anal..
[25] Limei Li,et al. Alternating direction implicit-Euler method for the two-dimensional fractional evolution equation , 2013, J. Comput. Phys..
[26] Kassem Mustapha,et al. An hp-Version Discontinuous Galerkin Method for Integro-Differential Equations of Parabolic Type , 2011, SIAM J. Numer. Anal..
[27] Cesar Palencia,et al. A spectral order method for inverting sectorial Laplace transforms , 2005 .
[28] J. C. López-Marcos. A difference scheme for a nonlinear partial integrodifferential equation , 1990 .
[29] A. Hanyga,et al. Wave propagation in media with singular memory , 2001 .
[30] Xuan Zhao,et al. Compact Alternating Direction Implicit Scheme for the Two-Dimensional Fractional Diffusion-Wave Equation , 2012, SIAM J. Numer. Anal..
[31] Santos B. Yuste,et al. On three explicit difference schemes for fractional diffusion and diffusion-wave equations , 2009 .
[32] Francesco Mainardi. FRACTIONAL DIFFUSIVE WAVES , 2001 .
[33] W. McLean. Regularity of solutions to a time-fractional diffusion equation , 2010 .
[34] Graeme Fairweather,et al. An H1-Galerkin Mixed Finite Element Method for an Evolution Equation with a Positive-Type Memory Term , 2002, SIAM J. Numer. Anal..
[35] Vidar Thomée,et al. Numerical solution of an evolution equation with a positive-type memory term , 1993, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.
[36] William McLean,et al. Fast Summation by Interval Clustering for an Evolution Equation with Memory , 2012, SIAM J. Sci. Comput..
[37] Thomas P. Wihler,et al. An A Priori Error Analysis of the hp-Version of the Continuous Galerkin FEM for Nonlinear Initial Value Problems , 2005, J. Sci. Comput..