Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations

We establish the well-posedness of an hp-version time-stepping discontinuous Galerkin (DG) method for the numerical solution of fractional super-diffusion evolution problems. In particular, we prove the existence and uniqueness of approximate solutions for generic hp-version finite element spaces featuring non-uniform time-steps and variable approximation degrees. We then derive new hp-version error estimates in a non-standard norm, which are completely explicit in the local discretization and regularity parameters. As a consequence, we show that by employing geometrically refined time-steps and linearly increasing approximation orders, exponential rates of convergence in the number of temporal degrees of freedom are achieved for solutions with singular (temporal) behavior near t = 0 caused by the weakly singular kernel. Moreover, we show optimal algebraic convergence rates for h-version approximations on graded meshes. We present a series of numerical tests where we verify experimentally that our theoretical convergence properties also hold true in the stronger L∞-norm.

[1]  Da Xu,et al.  Uniform l1 behaviour in a second-order difference-type method for a linear Volterra equation with completely monotonic kernel I: stability , 2011 .

[2]  William McLean,et al.  Discontinuous Galerkin method for an evolution equation with a memory term of positive type , 2009, Math. Comput..

[3]  Yury Luchko,et al.  Modeling anomalous heat transport in geothermal reservoirs via fractional diffusion equations , 2011 .

[4]  William McLean,et al.  Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation , 2009, Numerical Algorithms.

[5]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[6]  Dominik Schötzau,et al.  An hp a priori error analysis of¶the DG time-stepping method for initial value problems , 2000 .

[7]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[8]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[9]  Eduardo Cuesta,et al.  Convolution quadrature time discretization of fractional diffusion-wave equations , 2006, Math. Comput..

[10]  Santos B. Yuste,et al.  An Explicit Difference Method for Solving Fractional Diffusion and Diffusion-Wave Equations in the Caputo Form , 2011 .

[11]  J. M. Sanz-Serna,et al.  A numerical method for a partial integro-differential equation , 1988 .

[12]  Dominik Schötzau,et al.  Time Discretization of Parabolic Problems by the HP-Version of the Discontinuous Galerkin Finite Element Method , 2000, SIAM J. Numer. Anal..

[13]  William McLean,et al.  A second-order accurate numerical method for a fractional wave equation , 2006, Numerische Mathematik.

[14]  William McLean,et al.  Superconvergence of a Discontinuous Galerkin Method for Fractional Diffusion and Wave Equations , 2012, SIAM J. Numer. Anal..

[15]  Stig Larsson,et al.  Numerical solution of parabolic integro-differential equations by the discontinuous Galerkin method , 1998, Math. Comput..

[16]  W. Schneider,et al.  Fractional diffusion and wave equations , 1989 .

[17]  Graeme Fairweather,et al.  Spline collocation methods for a class of hyperbolic partial integro-differential equations , 1994 .

[18]  Tao Tang,et al.  A finite difference scheme for partial integro-differential equations with a weakly singular kernel , 1993 .

[19]  V. Thomée,et al.  Numerical solution via Laplace transforms of a fractional order evolution equation , 2010 .

[20]  L. Delves,et al.  On the numerical inversion of the Laplace transform , 1988 .

[21]  Zhi‐zhong Sun,et al.  A compact difference scheme for the fractional diffusion-wave equation , 2010 .

[22]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[23]  Christian Lubich,et al.  Fast and Oblivious Convolution Quadrature , 2006, SIAM J. Sci. Comput..

[24]  Dominik Schötzau,et al.  hp-Discontinuous Galerkin Time-Stepping for Volterra Integrodifferential Equations , 2006, SIAM J. Numer. Anal..

[25]  Limei Li,et al.  Alternating direction implicit-Euler method for the two-dimensional fractional evolution equation , 2013, J. Comput. Phys..

[26]  Kassem Mustapha,et al.  An hp-Version Discontinuous Galerkin Method for Integro-Differential Equations of Parabolic Type , 2011, SIAM J. Numer. Anal..

[27]  Cesar Palencia,et al.  A spectral order method for inverting sectorial Laplace transforms , 2005 .

[28]  J. C. López-Marcos A difference scheme for a nonlinear partial integrodifferential equation , 1990 .

[29]  A. Hanyga,et al.  Wave propagation in media with singular memory , 2001 .

[30]  Xuan Zhao,et al.  Compact Alternating Direction Implicit Scheme for the Two-Dimensional Fractional Diffusion-Wave Equation , 2012, SIAM J. Numer. Anal..

[31]  Santos B. Yuste,et al.  On three explicit difference schemes for fractional diffusion and diffusion-wave equations , 2009 .

[32]  Francesco Mainardi FRACTIONAL DIFFUSIVE WAVES , 2001 .

[33]  W. McLean Regularity of solutions to a time-fractional diffusion equation , 2010 .

[34]  Graeme Fairweather,et al.  An H1-Galerkin Mixed Finite Element Method for an Evolution Equation with a Positive-Type Memory Term , 2002, SIAM J. Numer. Anal..

[35]  Vidar Thomée,et al.  Numerical solution of an evolution equation with a positive-type memory term , 1993, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[36]  William McLean,et al.  Fast Summation by Interval Clustering for an Evolution Equation with Memory , 2012, SIAM J. Sci. Comput..

[37]  Thomas P. Wihler,et al.  An A Priori Error Analysis of the hp-Version of the Continuous Galerkin FEM for Nonlinear Initial Value Problems , 2005, J. Sci. Comput..